

D E P A R T M E N T O F C O M P U T E R S C I E N C E A N D E N G I N E E R I N G

2015-16

MICROPROCESSORS LAB

MANUAL (10CSL48)
IV SEM CSE

BY: CHETAN BALAJI

ASSOCIATE PROFESSOR

DEPT OF CSE

CHANNABASAVESHWARA INSTITUTE OF TECHNOLOGY.

GUBBI

 QMP 7.1 D/F

Channabasaveshwara Institute of Technology

(An ISO 9001:2008 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216.Karnataka.

Department of Computer Science & Engineering

MICROPROCESSORS LAB

 10CSL48

B.E - IV Semester

Lab Manual 2015-16

Name :_____________________________________

USN :_____________________________________

Batch : __________________ Section : ___________

Channabasaveshwara Institute of Technology

(An ISO 9001:2008 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216.Karnataka.

Department of Computer Science & Engineering

MICROPROCESSORS LAB

Version 1.0

FEBRUARY 2016

Prepared by: Approved by:

Mr.ChetanBalaji Prof. Shantala C.P

ASSOCIATE PROFESSOR Professor and Head

DEPT OF CSE

QMP 7.1 D/D

Channabasaveshwara Institute of Technology

(An ISO 9001:2008 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216.Karnataka.

SYLLABUS

MICROPROCESSORS LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Subject Code : 10CSL48 I.A. Marks : 25
Hours/Week : 03 Exam Hours : 03
Total Hours : 42 Exam Marks : 50

PART – A
Note:

 Develop and execute the following programs using an 8086 Assembly Language.
All the programs to be executed using an assembler like MASM, TASM etc.

 Program should have suitable comments.

 The board layout and the circuit diagram of the interface are to be provided to
the student during the examination.

1. a) Search a key element in a list of ‘n’ 16-bit numbers using the Binary search
algorithm.
b) Read the status of eight input bits from the Logic Controller Interface and

display ‘FF’ if it is even parity bits otherwise display 00. Also display number of 1’s

in the input data.

2. a) Write two ALP modules stored in two different files; one module is to read a

characterfrom the keyboard and the other one is to display a character. Use the

above two modules to read a string of characters from the keyboard terminated

by the carriage return and print the string on the display in the next line.

b)Implement a BCD Up-Down Counter on the Logic Controller Interface.

3. a) Sort a given set of ‘n’ numbers in ascending order using the Bubble Sort
algorithm.
b) Read the status of two 8-bit inputs (X & Y) from the Logic Controller Interface

and display X*Y.

4. a) Read an alphanumeric character and display its equivalent ASCII code at the
center ofthe screen.
b) Display messages FIRE and HELP alternately with flickering effects on a 7-

segment display interface for a suitable period of time.Ensure a flashing rate that

makes it easy to read both the messages (Examiner does not specify these delay

values nor it is necessary for the student to compute these values).

5. a) Reverse a given string and check whether it is a palindrome or not.
b) Assume any suitable message of 12 characters length and display it in the

rolling fashion on a 7-segment display interface for a suitable period of time.

Ensure a flashing rate that makes it easy to read both the messages. (Examiner

does not specify these delay values nor it is necessary for the student to compute

these values).

6. a) Read two strings, store them in locations STR1 and STR2. Check whether they
are equal or not and display appropriated messages. Also display the length of
the stored strings.
b) Convert a 16-bit binary value (assumed to be an unsigned integer) to BCD and

display it from left to right and right to left for specified number of times on a 7-

segment display interface.

7. a) Read your name from the keyboard and display it at a specified location on the
screen in front of the message what is your name? You must clear the entire
screen before display.

b)Scan a 8 x 3 keypad for key closure and to store the code of the key pressed in

a memory location or display on screen. Alsodisplay row and column numbers

of the key pressed.

8. a) Compute the factorial of a positive integer ‘n’ using recursive procedure.
b)Drive a Stepper Motor interface to rotate the motor in specifieddirection

 (Clockwise or counter-clockwise) by N steps (Directionand N are specified by the

Examiner).Introduce suitable delaybetween successive steps. (Any arbitrary

value for the delay maybe assumed by the student).

9. a) Read the current time from the system and display it in the standard format on
the screen.
b) Generate the Sine Wave using DAC interface (The output of the DAC is to be

displayed on the CRO).

10. a) Write a program to simulate a Decimal Up-counter to display 00- 99.

b) Generate a Half Rectified Sine wave form using the DAC interface. (The output

of the DAC is to be displayed on the CRO).

11. a) Read a pair of input co-ordinates in BCD and move the cursor to the specified
location on the screen.
b) Generate a Fully Rectified Sine waveform using the DAC interface. (The output

of the DAC is to be displayed on the CRO).

12. a)Write a Program to create a file (input file) and to delete an existing file.
b) Drive an elevator interface in the following way:

i. Initially the elevator should be in the ground floor, with all requests in OFF

state.

ii. When a request is made from a floor, the elevator should move to that floor,

wait there for a couple of seconds, and then come down to ground floor and

stop. If some requests occur during going up or coming down they should be

ignored.

Note: In the examination each student picks one question from a lot of all 12 questions

1. INDEX PAGE

Note: If the student fails to attend the regular lab, the experiment has to

be completed in the same week. Then the manual/observation and record

will be evaluated for 50% of maximum marks.

Sl.

No
Name of the Experiment

Date

M
a
n

u
a
l

M
a
r
k
s

(
M

a
x
 .

 2
5

)

R
e
c
o

r
d

M

a
r
k
s

(
M

a
x
.

1
0

)

S
ig

n
a
tu

r
e

(
S

tu
d

e
n

t)

S
ig

n
a
tu

r
e

(
F
a
c
u

lt
y
)

Conduction Repetition
Submission

of Record

Average

INSTRUCTIONS TO THE CANDIDATES

1. Students should come with through preparation for the experiments to be
conducted.

2. Students will not be permitted to attend the laboratory unless they bring the
practical record fully completed in all respects pertaining to the experiment
conducted in the previous class.

3. Experiment/Execution should be started only after the staff-in-charge has
checked the circuit diagram/coding

4. All the calculations should be made in the observation book. Specimen
calculations for one set of readings have to be shown in the practical record.

5. Wherever graphs are to be drawn, A-4 size graphs only should be used and the
same should be firmly attached to the practical record.

6. Practical record should be neatly maintained.

7. They should obtain the signature of the staff-in-charge in the observation book
after completing each experiment.

8. Theory regarding each experiment should be written in the practical record
before procedure in your own words.

Channabasaveshwara Institute of Technology

(An ISO 9001:2008 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216.Karnataka.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CONTENTS

Masm Commands 01-02

 Sample Programs 03-06

1 a. Binary Search 07-08

1.b. Logic controller- odd and even parity 09-10

2.a. Read and Write using Macros 11-12

2.b. Logic controller- BCD Up-Down Counter 13-14

3.a. Ascending order using Bubble Sort 15

3.b. Logic Controller- 8 bit Multiplication 16

4.a. Read alphanumeric character and display its ASCII code 17-18

4.b. 7-Segment display- FIRE and HELP. 19-20

5.a. Check a string for a Palindrome. 21-22

5.b. 7-segment Display- Rolling Fashion 23-24

6.a. Compare two strings for equality 25-27

6.b. 7-segmant Display – Binary to BCD conversion 28-30

7.a. Name Display 31-32

7.b. Matrix Keypad- Key Scan 33-35

8.a. Compute nCr using recursive procedure 36-37

8.b. Stepper Motor 38-39

9.a. Display the system time 40

9.b. Generate a SINE wave using DAC 41-42

 10.a. To simulate a Decimal Up-counter to display 00- 99 43-44

 10.b. Generate a half rectified SINE wave using DAC 45-46

 11.a. Move the Cursor to specified Location on the screen. 47-48

 11.b. Generate a fully rectified SINE wave using DAC 49-50

 12.a. Program to create a file (input file) and to delete an existing file. 51-52

 12.b. Elevator 53-56

 REFERENCES 57

Annexure 58-79

 Viva Questions 80-84

dept

D E P A R T M E N T O F C O M P U T E R S C I E N C E A N D E N G I N E E R I N G

2015-16

MICROPROCESSORS LAB
MANUAL (10CSL48)

IV SEM CSE
BY: CHETAN BALAJI

ASSOCIATE PROFESSOR

DEPT OF CSE

CHANNABASAVESHWARA INSTITUTE OF TECHNOLOGY.

GUBBI

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 1 -

MASM COMMANDS:

C :/>cd foldername

C:/foldername>edit filename.asm

 After this command executed in command prompt an editor window will open.

Program should be typed in this window and saved. The program structure is given

below.

Structure of Program:

.model tiny/small/medium/large

.Stack <some number>

.data

 ; Initialize data

 ; which is used in program.

.code

 ; Program logic goes here.

 ;

end

To run the program, the following steps have to be followed:

C:/foldername>masm filename.asm

 After this command is executed in command prompt if there are no errors in

program regarding to syntax the assembler will generates an object module as discuss

above.

C:/foldername>link filename.obj

 After verifying the program for correct syntax and the generated object files

should be linked together. For this the above link command should be executed and it

will give an EXE file if the model directive is small as discuss above.

C:/foldername>debug filename.exe

 After generating EXE file by the assembler it’s the time to check the output. For

this the above command is used and the execution of the program can be done in different

ways. It is as shown below:

__ g ; complete execution of program in single step.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 2 -

__ t ; Stepwise execution.

__d ds: starting address or ending address ; To see data in memory locations

__p ; Used to execute interrupt or procedure during stepwise execution of

program

__ q ; To quit the execution.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 3 -

SAMPLE PROGRAMS:

1. Write an ALP to move the data between the Registers.

.model tiny

.data

 num1 db 50h

 num2 dw 1234h

.code

 mov ax,@data

 mov ds,ax ;DATA SEGMENT INITIALIZATION

 mov al,num1

 mov ah,al

 mov bh,ah

 mov bl,al ;MOVES BYTE LENGTH OF DATA FROM REG.AL TO REG.BL

 mov cx,num2

 mov dx,cx

 mov si,ax

 mov di,si ;MOVES WORD LENGHT OF DATA FROM REG.CX TO REG.DX

 int 3 ;TERMINATES THE PROGRAM EXECUTION

end

2. Write and ALP to move immediate data to Registers.

.model tiny

.code

mov al,10h

mov ah,10

mov cl,50h

mov ch,50 ;MOVES IMMEDIATE VALUE TO 8 BIT REGISTER

mov bx,1234h

mov dx,1234 ;MOVES IMMEDIATE VALUE TO 16 BIT REGISTER

mov si,4000h

mov di,2000h

int 3 ;TERMINATE THE PROGRAM EXECUTION

end

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 4 -

3. Write an ALP to add two numbers and to store the result in the specified

 destination.

.model small

.data

 num1 db 05h

 num2 db 06h

 num3 dw 1234h

 num4 dw 0002h

 sum db ?

 sum2 dw ?

.code

 mov ax,@data

 mov ds,ax ;INITIALIZES DATA SEGMENT

 mov al,num1

 mov bl,num2

 add al,bl ;ADD THE 2 BYTES

 mov sum,al ;STORES THE RESULT IN MEMORY

 mov cx,num3

 add cx,num4 ;ADD THE 2 WORDS

 mov sum2,cx ;STORES THE RESULT IN MEMORY

 int 3 ;TERMINATE THE PROGRAM EXECUTION

 align 16 ;DS STARTS FROM PAGE BOUNDARY

end

4. Write and ALP to multiply two 16-bit numbers and to store the result in the

 specified location.

.model small

.data

num1 dw 1234h

num2 dw 0ffffh

res dw 5 dup(0)

.code

mov ax,@data

mov ds,ax ;INITIALIZATION OF DATA SEGMENT

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 5 -

mov ax,num1

mov dx,num2

mul dx ;MULTIPLIES 2 16-BIT NUMBERS

mov res,ax

mov res+2,dx ;STORES THE IN MEMORY

int 3 ;TERMINATE THE PROGRAM EXECUTION

align 16 ;DS STARTS FROM PAGE BOUNDARY

end

5. Write an ALP to divide a 32-bit Unsigned number by a 16-bit Unsigned number

and to store the quotient and remainder in the specified location.

.model small

.data

 dvd dd 12345678h

 dvr dw 0ffffh

 quot dw ?

 remd dw ?

.code

mov ax,@data

mov ds,ax ;INITIALIZATION OF DATA SEGMENT

mov si,offset dvd

mov ax,word ptr[si]

mov dx,word ptr[si+2]

mov cx,dvr

div cx

mov quot,ax

mov remd,dx

int 3 ;TERMINATES THE PROGRAM EXECUTION

align 16 ;DS STARTS FROM PAGE BOUNDARY

end

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 6 -

6. Write an ALP to illustrate the operation of AAA instruction. Use Macros

.model small

.data

read macro ;Start of a macro

mov ah,01h ;read a single key stroke

int 21h

endm ;end of macro

.code

mov ax,@data

mov ds,ax ;INITIALIZATION OF DATA SEGMENT

read ;CALL MACRO READ

mov bl,al ;STORE THE READ KEY IN BL REGISTER

read

mov cl,al

add al,bl ;ADD AL WITH BL AND STORES THE RESULT IN AL.

mov dl,al

mov ah,0

aaa ;ADJUST THE AL VALUE TO UNPACKED BCD

mov si,ax

int 3 ;TERMINATES THE PROGRAM EXECUTION

end

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 7 -

LAB PROGRAMS:

Program No.01.A. Date:

BINARY SEARCH

AIM:

Search a key element in a list of ‘n’ 16-bit numbers using the Binary search

algorithm.

.model small

.data ;start of the data segment

 arr dw 0111h,0112h,0113h,0114h,0115h ; ‘n’ elements to be searched

 len dw ($-arr)/2

 key equ 0116h ; key element to be searched

 msg1 db "found$"

 msg2 db "not found$"

.code ; start of the code segment

 mov ax,@data ;initialization of data segment

 mov ds,ax

 mov bx,00 ; first data position to bx.

 mov dx,len ; last data position to dd.

 mov cx,key

again: cmp bx,dx

 ja notfnd

 mov ax,bx

 add ax,dx

 shr ax,1 ;Get the middle element of array

 mov si,ax

 add si,si

cmp cx,arr[si] ;compare the key with middle

 jae big ; element of array

 dec ax

 mov dx,ax ;last element of new array to dx

 jmp again

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 8 -

big: je found

 inc ax

 mov bx,ax

 jmp again

found: lea dx,msg1 ;content of the string to be displayed.

 jmp displ

notfnd: lea dx,msg2 ;content of the string to be displayed.

displ : mov ah,09h

 int 21h

 int 3 ; Terminates the execution

end ;end of program

Conclusion:

This program performs a search for a key element in an array. If the search

element is found it will display a message ‘found’. As the search element (key element in

program) is not present in the given array it will display a message ‘not found’.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 9 -

Program No.01. B. Date:

LOGIC CONTROLLER-ODD AND EVEN PARITY

AIM:

 Read the status of eight input bits from the Logic Controller Interface and display

 FF if it is even parity bits otherwise display 00.

.model small

.data

 pa equ 0d800h ; Port address

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h ; control Register address

.code

start: mov ax, @data

 mov ds, ax ; Initialization of data segment

 mov dx, ctrl

 mov al, 82h ; move the control word to ‘al’ register

 out dx, al ; move the control word to control register

 mov dx, pb ; Get the input data form ‘pb’

 in al, dx ; Get the input data to AL register

 mov bl, 00h

 mov cx, 08 ; number of rotations

up: rcl al,1

 jnc down ; after each rotation check for the carry flag

 inc bl ; If there is a carry, increment the ‘BL’ register

down: loop up ; Repeat rotation for ‘08’ times

 test bl,01h ; perform ‘AND’ operation to check for even or odd parity

 jnz oddp ; If the result of the ‘AND’ is not zero, it is odd parity

 mov al,0ffh ; If even parity display 0ffh

 jmp next

oddp: mov al,00h ; If odd parity display 00h

next: mov dx,pa

 out dx,al ; put the result to the ports

 int 3

 End start

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 10 -

Conclusion:
The program reads port B of 82C55A which is an input port. If input

contains an odd number of 1’s (that is the number of LED’s at logic 1) then the output

will be 00 at port A, which is an output port, indicating input is odd parity and after some

delay the number of 1’s present in input will be displayed through port A on the output.

Similarly If input contains an even number of 1’s (that is the number of LED’s at logic 1)

then the output will be FF at port A, which is an output port, indicating input is even

parity and after some delay the number of 1’s present in input will be displayed through

port A on the output.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 11 -

Program No.02.A. Date:

Read and Write using Macros

AIM:

 Write two ALP modules stored in two different files; one module is to read a

 character from the keyboard and the other one is to display a character. Use

 the above two modules to read a string of characters from the keyboard

 terminated by the carriage return and print the string on the display in the

 next line.

.model small

.data

 String db 30 dup (?)

.code

include c:\masm\read.mac

include c:\masm\write.mac

start: mov ax, @data

 mov ds, ax ; Initialization of data segment

 mov si, 00h

again: read ; CALL MACRO READ

 cmp al, 0dh ; compare the data in ‘AL’ reg with enter Key

 je down

 mov string[si], al ; Move the data in ‘AL’ reg to destination.

 inc si

 jmp again

down: mov cx, si

 mov si, 00h

 write 0dh ; ‘13’,’10’ , To go to next line

 write 0ah

back: write string[si] ; Call write macro to write the data

 inc si

 loop back ; Repeat the writing

 int 3 ; Termination of the program

 end start

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 12 -

read.mac

read macro
 mov ah, 01h ; Dos command to read a data from keyboard

 int 21h

 endm

write.mac

write macro x

 mov dl, x

 mov ah, 02h ; Dos command to write a data to the O/P screen

 int 21h

 endm

Conclusion:

 This program reads the character entered through the Key board and stores in

the consecutive specified memory locations. This process repeats till the ENTER Key

(carriage return) is pressed. Once the ENTER key (carriage return) is pressed the

character stored in the consecutive memory locations will be displayed on the next line.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 13 -

Program No.02.B. Date:

Logic controller- BCD Up-Down Counter

AIM:

Implement a BCD Up-Down Counter on the Logic Controller Interface.

.model small

.data

pa equ 0d800h

pb equ 0d801h

pc equ 0d802h

ctrl equ 0d803h

.code

 mov ax, @data

 mov ds, ax

 mov al, 80h

 mov dx, ctrl

 out dx, al

 mov cx, 0Ah

 mov al, 00h

Next: mov dx, pa

 out dx, al

 call delay

 inc al

 loop Next

 mov cx, 0Ah

 mov al, 09h

 rpt: mov dx, pa

 out dx, al

 call delay

 dec al

 loop rpt

 int 3h

 delay proc

 push cx

 push bx

 L1: mov cx, 0ffffh

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 14 -

 L2: mov bx, 8fffh

 dec bx

 jnz L2

 loop L1

 pop bx

 pop cx

 ret

 delay endp

 end

Conclusion:

 The program performs the up-down counter based on the input data given

on logic controller read through port B. If the input is zero then it performs down counter

starting from 99 down to 00 and if other than zero is the input then it performs up counter

starting from 00 down to 99. And the counting will continue until a key ‘q’ is pressed in

the key board, after displaying the count on logic controller every time it checks whether

a key ‘q’ is pressed or not.

While observing the output of down counter or up counter if the input changes then from

that point the counting will also changes. Suppose if the input is zero then it perform

down counting from 99 to 00 after some time when the output is 50 then if we change the

input other than zero then from that point it will start up counting that is form 50, 51, 52.

and so on.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 15 -

Program No.03.A. Date:

Ascending order using Bubble Sort

AIM:

Sort a given set of ‘n’ numbers in ascending order using the Bubble Sort

algorithm.

.model small

.data

 arr1 db 5h, 89h, 3h, 56h, 1h ; The numbers to be sorted

 len1 equ $-arr1

.code

start: mov ax, @data

 mov ds, ax

 mov ch, len1-1 ; no of iterations

agn1: mov cl, ch ; no of comparisions

 mov si, offset arr1

rept1: mov al, [si] ; Get the first data of the array

 inc si ; Increment the array

 cmp al, [si] ; Compare the first and second data

 jbe next1 ; Check, if the 1st data is less than 2nd

 xchg al, [si] ; If the 1st data is greater than the 2nd,

 mov [si-1], al ; Swap the two data.

next1: dec cl ; dec the no of comparisons

 jnz rept1 ; check for zero

 dec ch ; dec the no of iterations

 jnz agn1 ; check for zero

 int 3 ; Terminate the program

 end start

Conclusion:

 This program will sort the given numbers in ascending order. The sorted numbers

will be stored directly in the data Segment. To view the data segment the following code

must be used.

-d ds: 0

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 16 -

Program No.03.B. Date:

Logic Controller- 8 bit Multiplication

AIM:

Read the status of two 8-bit inputs (X & Y) from the Logical Controller

Interface and display X*Y.

.model small

.data

pa equ 0d800h

pb equ 0d801h

pc equ 0d802h

ctrl equ 0d803h

.code

 mov ax,@data

 mov ds,ax

 mov al,82h ; Control word (PB as input port and PA as output port)

 mov dx, ctrl

 out dx, al

 mov dx, pb

 in al,dx ; Read the first 8 bit number

 mov bl,al ; Store the first number

top: mov ah,1 ; Read a character from the key board

 int 21h

 cmp al,13 ; Compare the character with the "ENTER" key, cmp al,0dh

 jnz top

 mov dx, pb ; Read the Second 8 bit number

 in al,dx ; Store the first number

 mul bl ; Multiply bl*al

 mov dx, pa

 out dx, al ; Display the result

 int 3

 end

Conclusion:

 The program performs the multiplication between two bytes and gives the

result. First byte is read from the port B of logic controller (user has to provide) and waits

for enter key to be pressed and once enter key is and it reads the Second byte and

multiplies and displays the result through Port A.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 17 -

Program No.04.A. Date:

Read alphanumeric character and display its ASCII code

AIM:

Read an alphanumeric character and displays its equivalent ASCII code at the

center of the screen.

.model small

.data

 alpha db ?

 ascii db ?, ?, "$"

.code

start: mov ax, @data

 mov ds, ax ; Initialization of data segment

 mov ah, 01h ; READ A CHARACTER FROM KEY BOARD

 int 21h

 mov alpha, al

 mov cl, 04 ; Store the character in the memory

 shr al, cl ; Shift right the data by 4 times

 cmp al, 09h ;l compare the shifted data with 09h

 jbe add30

 add al, 07h

add30: add al, 30h

 mov ascii, al

 mov al, alpha ; Get back the character

 and al, 0fh ; And (to mask the higher nibble)

 cmp al, 09h

 jbe add30h

 add al, 07h

add30h: add al, 30h

 mov ascii+1, al

 mov cx, 30h*90 ;CLEAR THE SCREEN

 mov dl, ' '

 mov ah, 02

back: int 21h

 loop back

 mov ah, 02h ;Set the cursor position

 mov bh, 00 ; to desired location

 mov dl, 30 ;column no.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 18 -

 mov dh, 15 ;row no.

 int 10h

 mov dx, offset ascii ; display the ascii code

 mov ah, 09h

 int 21h

 mov ah, 01h ; PRESS ENTER KEY

 int 21h

 int 3

 end start

Conclusion:

 This program reads the character from key board by using the DOS function 01H

and finds its ASCII equivalent number.

First it clears the entire screen and places the cursor to the specified location using BIOS

function 02H. After, it will display the ASCII value where cursor is placed. In order to

observe the output on the screen the program is not been terminated until enter key is

pressed.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 19 -

Program No.04.B. Date:

7-Segment display- FIRE and HELP

AIM:

Display messages FIRE and HELP alternately with flickering effects on a 7-Segment

display interface for a suitable period of time. Ensure a flashing rate that makes it

easy to read both the messages.

.model small

.stack 100

.data

 pa equ 0d800h ; Port address

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h ; Control word address

 str1 db 8eh, 0f9h, 88h, 86h ; Hexa values for “FIRE”

 str2 db 89h, 86h, 0c7h, 8ch ; Hexa values for “HELP”

.code

start: mov ax, @data

 mov ds, ax ; data segment Initialization

 mov al, 80h ; control word

 mov dx, ctrl

 out dx, al

again: mov bx, offset str1

 call display ; Jump to display procedure

 call delay ; Jump to delay procedure

 mov bx, offset str2

 call display

 call delay

 mov ah, 06h ; direct console input or output

 mov dl, 0ffh

 int 21h ;get character from keyboard buffer (if any)

 cmp al, 'q'

 jne again

 int 3 ; Terminate the program

display proc

 mov si, 03h ; To get the last byte

up1: mov cl, 08h

 mov ah, [bx+si] ; Load the data bit to ‘ah’

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 20 -

up: mov dx, pb

 rol ah, 1 ;Rotate each bit in the data by one

 mov al, ah

 out dx, al ; Out the first bit

 call clock

 dec cl

 jnz up ; repeat the steps ‘08’ times

 dec si

 cmp si, -1

 jne up1

 ret ; return back to main program

display endp

clock proc

 mov dx, pc

 mov al, 01h ; rising edge of clock pulse

 out dx, al

 mov al, 0 ; falling edge of the clock pulse

 out dx, al

 mov dx, pb

 ret

clock endp

delay proc

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

delay endp

 end start

Conclusion:

 This program displays “FIRE” and “HELP” on seven segment display interface

recursively one after the other with some delay till key ‘q’ is pressed on key board. It’s

not going to read any data from interface device. The data which has to be displayed is

provided in the program itself.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 21 -

Program No.05.A. Date:

Check a string for a Palindrome

AIM:

Reverse a given string and check whether it is a palindrome or not.

.model small

.data

 str1 db "alam" ; String to be checked for palindrome

 slen equ ($-str1)

 str2 db 40 dup(0)

 msg1 db "Palindrome$"

 msg2 db "Not Palindrome$"

.code

start: mov ax,@data

 mov ds,ax

 mov es,ax ; Initialize extra segment

 mov cx,slen ; Length of the string

 lea si, str1

 add si,slen – 1 ; get the last byte of the data

 lea di, str2

up: mov al,[si]

 mov [di],al ; load the byte from [Si] to [Di]

 dec si

 inc di

 loop up ; Repeat the process

 lea si, str1

 lea di, str2

 mov cx,slen

 cld ; Clear the direction flag

repe cmpsb ; compare the string bytes present in SI & DI

 jne down ; Jump if the strings are not equal

 lea dx, msg1

 jmp down1

down: lea dx, msg2

down1: mov ah,09h

 int 21h

 int 3 ; Terminate the program

 end start

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 22 -

Conclusion:

 This program reverse the string provided in data segment by keeping the

original string as it is and compares both the strings. It will check each and every

character. If all the characters are same then the given string is said to be as palindrome

and it will display a message “palindrome” on screen otherwise the given string is not

palindrome and it will display a message “not palindrome” on screen.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 23 -

Program No.05.B. Date:

7-segment Display- Rolling Fashion

AIM:

Assume any suitable message of 12 characters length and display it in the

 rolling fashion on a 7-Segment display Interface for a suitable period of time.

 Ensure a flashing rate that makes it easy to read the message.

.model small

.stack 100

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 str1 db 0c0h,0f9h,0a4h,0b0h,99h,92h,83h,0f8h,80h,98h,0c0h,0f9h

.code

start: mov dx, @data

 mov ds, dx ; Initialize the data segment

 mov al, 80h ; Control word

 mov dx, ctrl

 out dx, al

again: mov bx, offset str1 ; Get the offset address of the string

 call display

 call delay

 mov ah, 06h ; direct console input or output

 mov dl, 0ffh ; get the character for the key-board

 int 21h

 cmp al, 'q' ; compare the character with ‘q’

 jnz again

 int 3 ; terminate the program

display proc

 mov si, 0bh ; Load [Si] with 12 (0dh)

up1: call delay

 mov cl, 08h ; To get the last byte

 mov ah, [bx+si] ; Load the data bit to ‘ah’

up: mov dx, pb

 rol ah, 1 ; Rotate each bit in the data by one

 mov al, ah

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 24 -

 out dx, al ; Out the first bit

 call clock

 dec cl

 jnz up ; repeat the steps ‘08’ times

 dec si

 cmp si, -1

 jne up1 ; repeat the steps ‘12’ times

 ret

display endp

clock proc

 mov dx, pc

 mov al, 01h ; Rising edge of the clock pulse

 out dx, al

 mov al, 0 ; Falling edge of the clock pulse

 out dx, al

 mov dx, pb

 ret

clock endp

delay proc

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret ; Return back to main program

delay endp

 end start

Conclusion:

 This program displays a message of 12 characters in rolling fashion on

seven segment display. The message is stored in data segment. It will continue of rolling

the message until ‘q’ is pressed in keyboard. But it will check for a key press event only

after displaying the complete string. Till then it will just keep on displaying the

characters.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 25 -

Program No.06.A. Date:

Compare two strings for equality

AIM:

Read two strings; store them in locations STR1 and STR2. Check whether they are

equal or not and display appropriated messages. Also display the length of the

stored strings.

.model small

.data

 str1 db 30 dup(0)

 str2 db 30 dup(0)

 len1 dw 1 dup(0)

 len2 dw 1 dup(0)

 msg1 db 13,10, "Enter the 1st string : $"

 msg2 db 13,10, "Enter the 2nd string : $"

 msg3 db 13,10, "String are not equal $"

 msg4 db 13,10, "Strings are equal $"

 msg5 db 13,10, "The length of the first string is : "

 slen1 db ?, ?

 msg6 db 13,10,"The length of the second string is : "

 slen2 db ?, ?,13,10,'$'

.code

read macro ; create a macro for read operation
 mov ah, 01

 int 21h

 endm

disp macro x ; create a macro for display the string

 mov dx, offset x

 mov ah, 09

 int 21h

 endm

start: mov ax,@data

 mov ds,ax

 mov es,ax ; Initialize Data and extra segment

 disp msg1 ; READ FIRST STRING

 mov si,0h

up1: read ; Read a character from Key-board

 cmp al,0dh ; compare the key with Enter Key.

 je down1

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 26 -

 mov str1[si],al ; Store the key in the location

 inc si

 jmp up1

down1: mov len1,si

 disp msg2 ; READ SECOND STRING

 mov si,0h

up2: read ; Read a character from Key-board

 cmp al,0dh ; compare the key with Enter Key.

 je down2

 mov str2[si],al ; Store the key in the location

 inc si

 jmp up2

down2: mov len2,si

 mov cx,len1

 cmp cx,len2 ; Check whether the strings are equal or not

 jne noteq

 mov si,offset str1

 mov di,offset str2

 cld ; Clear direction flag

 repe cmpsb ; repeat the comparisons if

 ; the strings are equal

 jne noteq

 disp msg4

 jmp next

noteq: disp msg3

next: mov al,byte ptr len1

 aam

 add ax, 3030h ; Display the length of the 1st String

 mov slen1, ah

 mov slen1+1, al

 mov al,byte ptr len2

 aam

 add ax, 3030h ; Display the length of the 2nd String

 mov slen2, ah

 mov slen2+1, al

 disp msg5

 int 3 ; Terminate the program

 end start

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 27 -

Conclusion:

 This program reads two strings from user and compares both the strings. First it

checks the length of the strings and if lengths are equal then it will check each and every

character. If all the characters are same then the given strings are said to be equal and it

will display a message “strings are equal” along with length of both the strings on screen.

Else will display as “strings are not equal”.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 28 -

Program No.06.B. Date:

7-segment Display – Binary to BCD conversion

AIM:

Convert a 16-bit binary value(assumed to be an unsigned integer) to BCD and

display it form left to right and right to left for specified number of times on a 7-

Segment display Interface.

.model small

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 bin dw 000Fh

 bcd db 4 dup(0)

 count db 02

 disptbl db 0c0h, 0f9h, 0a4h, 0b0h, 99h,

 db 92h, 82h, 0f8h, 80h, 98h ; Look up table

.code

start: mov ax, @data

 mov ds, ax

 mov al, 80h ; All ports are output ports

 mov dx, ctrl

 out dx, al

 mov bx, 10 ; To perform BCD division

 mov cx, 04 ; Divide 04 times

 mov ax, bin ; Load the number to be divided

back: mov dx, 0

 div bx

 push dx ; store the result in the stack.

 loop back ; Repeat the division

 lea si, bcd

 mov cx, 04

back1: pop dx

 mov [si], dl ; Get the result from the stack

 inc si

 loop back1

 mov bx, offset disptbl

disp: call display1

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 29 -

 call delay

 call display

 call delay

 dec count

 jnz disp

 int 3

display proc

 mov si, 00

nxtchar: mov al, bcd[si]

 xlat ; Translate a byte

 mov ah, 8

nxtseg: mov dx, pb

 rol al, 01

 out dx, al

 mov ch, al

 call clock

 mov al,ch

 dec ah

 jnz nxtseg

 inc si

 cmp si,4

 jne nxtchar

 ret

display endp

display1 proc

 mov si, 03

nxtchar1: mov al, bcd[si]

 xlat

 mov ah, 8

nxtseg1: mov dx, pb

 rol al, 01

 out dx, al

 mov ch, al

 call clock

 mov al,ch

 dec ah

 jnz nxtseg1

 dec si

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 30 -

 cmp si,-1

 jne nxtchar1

 ret

display1 endp

clock proc

 mov dx, pc

 mov al, 01h

 out dx, al

 mov al, 0

 out dx, al

 mov dx, pb

 ret

clock endp

delay proc

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

delay endp

 end start

Conclusion:

 This program converts a 16-bit number provided in data segment into

BCD. Then it will displays the BCD number on seven segment display interface form left

to right and right to left for specified number of times.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 31 -

Program No.07.A. Date:

Name Display

AIM:

Read your name from the keyboard and displays it at a specified location on the

screen in front of the message “What is your name?” you must clear the entire

screen before display.

.model small

.data

 msg1 db "Enter the name $"

 x db 10

 y db 20

 msg2 db "What is your name ? "

 str db 30 dup(0)

.code

disp macro z ; macro to display a string

 mov dx, offset z

 mov ah, 09

 int 21h

 endm

start: mov ax,@data

 mov ds,ax

 disp msg1

 mov si,0h

up: mov ah, 01 ; read the character from the keyboard

 int 21h

 cmp al,0dh

 je down

 mov str[si],al

 inc si

 jmp up

down: mov str[si],'$'

 mov cx, 29h*50h ; To clear the screen

 mov dl, ' '

 mov ah, 02

back: int 21h ; Get DOS functions

 loop back

 mov dl, x ; Row number

 mov dh, y ; Column number

 mov bh, 00h

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 32 -

 mov ah, 02

 int 10h ; To move the cursor to the location

 disp msg2

 mov ah,01

 int 21h

 int 3 ; Termination of the program

 end start

Conclusion:
 This program will reads a string and displays the same string on the screen at the

desired position after clearing the screen.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 33 -

Program No.07.B. Date:

Matrix Keypad- Key Scan

AIM:

 Scan a 8x3 keypad for key closure and to store the code of the key pressed in a

 memory location and display on screen. Also display row and column numbers

 of the key pressed.

.model small

.stack 100

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 ASCIICODE db "0123456789.+-*/%ack=MRmn" ; look up table

 str db 13,10,"press any key on the matrix keyboard$"

 str1 db 13,10,"Press y to repeat and any key to exit $"

 msg db 13, 10,"the code of the key pressed is :"

 key db ?

 msg1 db 13,10,"the row is "

 row db ?

 msg2 db 13,10,"the column is "

 col db ?,13,10,’$’

.code

disp macro x ; Display a string

 mov dx, offset x

 mov ah, 09

 int 21h

 endm ; End of a macro

start: mov ax,@data

 mov ds,ax

 mov al,90h ; Port ‘A’ is input port

 mov dx,ctrl

 out dx,al

again1: disp str

 mov si,0h

again: call scan

 mov al,bh ; Row number

 add al,31h

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 34 -

 mov row,al

 mov al,ah ; Column number

 add al,31h

 mov col,al

 cmp si,00

 je again

 mov cl,03

 rol bh,cl

 mov cl,bh

 mov al,ah

 lea bx,ASCIICODE ; Address of the look up table

 add bl,cl

 xlat ; Translate a byte in AL

 mov key,al

 disp msg

 disp str1

 mov ah, 01 ; Read a string

 int 21h

 cmp al,'y'

 je again1

 int 3

scan proc

 mov cx,03

 mov bh,0

 mov al,80h

nxtrow: rol al,1

 mov bl,al

 mov dx,pc

 out dx,al

 mov dx,pa

 in al,dx

 cmp al,0

 jne keyid

 mov al,bl

 inc bh

 loop nxtrow

 ret

keyid: mov si,1

 mov cx,8

 mov ah,0

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 35 -

agn: ror al,1

 jc skip ; check for the carry

 inc ah

 loop agn

skip: ret ; Return to main program

scan endp

 end start

Conclusion:
 This program reads the data from the 8*3 key interface board. It will display its

value on the screen. It will also display the row number and column number of the key

pressed.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 36 -

Program No.08.A. Date:

Compute nCr using recursive procedure

AIM:

Compute nCr using recursive procedure. Assume that ‘n’ and ‘r’ are non-negative

integers.

.model small

.stack 20

.data

 n db 08h

 r db 05h

 ncr db ?

.code

start: mov ax,@data

 mov ds,ax

 mov ncr,00h

 mov al,n

 mov bl,r

 call encer

 int 3

encer proc
para1: cmp al,bl ; compare ‘n’,’r’ for equality

 je para8

para2: cmp bl,00h ; compare ‘r’ with 00

 je para8

para3: cmp bl,01h ; compare ‘r’ with 01h

 je para10

para4: dec al ; decrement ‘n’

 cmp bl,al

 je para9

para5: push ax ; Push ‘n’ to the stack

 push bx ; Push ‘r’ to the stack

 call encer

para6: pop bx ; Get ‘r’ and ‘n’ from the stack

 pop ax

 dec bl

 push ax

 push bx

 call encer

para7: pop bx

 pop ax

 ret

para8: inc ncr

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 37 -

 ret

para9: inc ncr

para10: add ncr,al

 ret

encer endp

 end start

Conclusion:

 This program performs nCr using recursive procedure. Output is stored in data

segment. To observe the output in data segment we have to search for our given ‘n’ and

‘r’ values as program is written to store the result after the given data in data segment.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 38 -

Program No.08.B. Date:

Stepper Motor

AIM:

 Drive a Stepper Motor interface to rotate the motor in specified direction

 (clockwise or counter-clockwise) by N steps (Direction and N are specified by

 the examiner).Introduce suitable delay between successive steps. (Any arbitrary

 value for the delay may be assumed by the student).

.model small

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 nstep db 2

.code

start: mov ax, @data

 mov ds, ax

 mov al, 80h ; All ports are output ports

 mov dx, ctrl

 out dx, al

 mov bh, nstep

 mov al, 88h

again1: call step

 rol al, 1 ; for counter-clock wise direction

 ; Replace rol al,1 with ror al,1 for clock wise direction

 dec bh

 jnz again1

 int 3

step proc

 mov dx, pa

 out dx, al

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 39 -

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

step endp

 end start

Conclusion:

 This program drives a stepper motor interface to rotate by 8 steps in anti-

clockwise direction. After each rotation a delay is introduced to observe the rotation.

After completing the rotations the execution will get stopped.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 40 -

Program No.09.A. Date:

Display the system time

AIM:

 Read the current time from the system and display it in the standard format on

 the screen.

.model small

.data

 msg db "The time is: "

 hrs db ?,?,' : '

 mins db ?,?,' (hh:mm) ',10,13,'$'

.code

start: mov ax,@data

 mov ds,ax

 mov ah,2ch ; DOS function to read system time

 int 21h

 mov al,ch ; load the hours to ‘al’

 aam ; ASCII adjust after multiplication

 add ax, 3030h

 mov hrs, ah

 mov hrs+1, al

 mov al,cl ; load the seconds to ‘al’

 aam

 add ax, 3030h

 mov mins, ah

 mov mins+1,al

 lea dx,msg ; Display the time

 mov ah,09h

 int 21h

 int 3

end start

Conclusion:

 This program displays the present system time. Our program displays only the

hours and minutes in the format HH: MM.By using the same DOS function we can also

display the seconds and milliseconds.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 41 -

Program No.09.B. Date:

Generate a SINE wave using DAC

AIM:

 Generate a Sine Wave using the DAC interface. (The output of the

 DAC is to be displayed on the CRO).

.model small

.data

 pa equ 0c400h

 pb equ 0c401h

 pc equ 0c402h

 ctrl equ 0c403h

 table db 128,132,137,141,146,150,154,159,163,167,171,176,180,184,188

 db 192,196,199,203,206,210,213,217,220,223,226,229,231,234,236

 db 239,241,243,245,247,248,250,251,252,253,254,255

 db 255,254,253,252,251,250,248,247,245,243,241,239,236,234,231

 db 229,226,223,220,217,213,210,206,203,199,196,192,188,184,180

 db 176,171,167,163,159,154,150,146,141,137,132,128

 db 123,119,114,110,105,101,97,93,88,84,80,76,72,68,64,60,56,52,49

 db 45,42,39,36,33,30,27,24,22,19,17,15,11,9,7,6,5,4,3,2,1,0

 db 0,1,2,3,4,5,6,7,9,11,15,17,19,22,24,27,30,33,36,39,42,45,49,52,56

 db 60,64,68,72,76,80,84,88,93,97,101,105,110,114,119,123

.code

start: mov ax,@data

 mov ds,ax

 mov al,80h ; All the ports are out put ports

 mov dx,ctrl

 out dx,al

again: mov bx,05h

up: mov cx,164 ; Load 164 values

 mov si,00h

 mov dx,pa

again1: mov al,table[si] ; Load each value from Look-up-table to al

 out dx,al

 inc si

 loop again1

 dec bx

 cmp bx,00

 jne up

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 42 -

 mov ah,06h ; direct console input or output

 mov dl,0ffh ; Read the character from the keyboard

 int 21h

 jz again

 int 3

 end start

Conclusion:

This program generates a sine wave of having amplitude of 5V. Output will be

seen in CRO. It will be continues wave. It stops execution as soon as any key is pressed

from the key board.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 43 -

Program No.10.A. Date:

To simulate a Decimal Up-counter to display 00- 99

AIM:

Write a program to simulate a Decimal Up-counter to display 00- 99.

.model small

.data

 string db "the count is "

 nors db ?,?,'$'

.code

start: mov ax,@data

 mov ds,ax

 mov ah,03h ; get cursor position and size.

 mov bh,00h ; page number.
 int 10h

up: mov cl,00h

up1: mov al,cl

 aam

 add ax, 3030h

 mov nors, ah

 mov nors+1, al

 push dx

 mov ah,02h ; set cursor position

 mov bh,00h ; page number

 int 10h

 mov dx,offset string ; Display the string

 mov ah,09h

 int 21h

 inc cl

 call delay

 mov ah,06h ; direct console input or output.
 mov dl,0ffh ; get character from keyboard buffer

 int 21h

 cmp al,'q'

 je exit

 pop dx

 cmp cl,100

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 44 -

 je up

 jmp up1

exit: int 3 ; Terminate the program

delay proc ; Delay procedure

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret ; Return back to main program

 delay endp

 end start

Conclusion:

 This program counts decimal values from 00 to 99. Count will continue until a

key is pressed in key board.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 45 -

Program No.10.B. Date:

Generate a half rectified SINE wave using DAC

AIM:

 Generate a Half Rectified Sine wave form using the DAC interface. (The

 output of the DAC is to be displayed on the CRO).

.model small

.data

 pa equ 0c400h

 pb equ 0c401h

 pc equ 0c402h

 ctrl equ 0c403h

 table db 128,132,137,141,146,150,154,159,163,167,171,176,180,184,188

 db 192,196,199,203,206,210,213,217,220,223,226,229,231,234,236

 db 239,241,243,245,247,248,250,251,252,253,254,255,254,253,252

 db 251,250,248,247,245,243,241,239,236,234,231,229,226,223,220

 db 217,213,210,206,203,199,196,192,188,184,180,176,171,167,163

 db 159,154,150,146,141,137,132,128 ; Look_up_table

.code

start: mov ax,@data

 mov ds,ax

 mov al,80h ; All the ports are out put ports

 mov dx,ctrl

 out dx,al

again3: mov bx,05h

up: mov cx,83 ; Load 83 values

 mov si,00

again4: mov dx,pa

 mov al,table[si] ; Load each value from Look-up-table to al

 out dx,al

 inc si

 loop again4

 mov cx,83

 mov al,128

next: out dx,al

 loop next

 dec bx

 cmp bx,00h

 jnz up

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 46 -

 mov ah,06h ; direct console input or output

 mov dl,0ffh ; Read the character from the keyboard

 int 21h

 jz again3

 int 3 ; Terminate the program

end start

Conclusion: This program generates a half - rectified sine wave of 5V amplitude. Output

will be seen in CRO. It stops execution as soon as any key is pressed from the key board.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 47 -

Program No.11.A. Date:

Move the Cursor to specified Location on the screen

AIM:

 Read a pair of input co-ordinates in BCD and move the cursor to the specified

 location on the screen.

.model small

.data

 x db ?

 y db ?

 msg1 db 13, 10, "Enter the y co ordinate (00 - 19)$"

 msg2 db 13, 10, "Enter the x co ordinate (00 - 50)$"

.code

read macro ; Macro to read the character
 mov ah, 01h

 int 21h

 endm ; End of Macro

start: mov ax,@data

 mov ds,ax

 mov dx,offset msg1 ; Display the first message

 mov ah,09h

 int 21h

 read ; Read a character

 mov cl, 04h

 shl al, cl

 mov bl,al

 read ; Read a character

 and al,0fh

 or al,bl

 mov y,al

 mov dx,offset msg2 ; Display the first message

 mov ah,09h

 int 21h

 read ; Read a character

 mov cl,04h

 shl al,cl

 mov bl,al

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 48 -

 read ; Read a character

 and al,0fh

 or al,bl

 mov x,al

 mov ah,02h ; Clear the screen

 mov cx, 19h*50h

 mov dl, ' '

back: int 21h

 loop back

 mov ah,02h ; Set the cursor to the specified location

 mov bh,00h

 mov dh,y

 mov dl,x

 int 10h

 read

 int 3

end start

Conclusion:

This program reads X and Y coordinates from key board and takes the cursor to

the specified location after clearing the screen and it will remains at the same position

until a key pressed.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 49 -

Program No.11.B. Date:

Generate a fully rectified SINE wave using DAC

AIM:

 Generate a Fully Rectified Sine waveform using the DAC interface. (The

 output of the DAC is to be displayed on the CRO).

.model small

.data

 pa equ 0c400h

 pb equ 0c401h

 pc equ 0c402h

 ctrl equ 0c403h

 table db 128,132,137,141,146,150,154,159,163,167,171,176,180,184,188

 db 192,196,199,203,206,210,213,217,220,223,217,220,223,226,229

 db 231,234,236,239,241,243,245,247,248,250,251,252,253,254,255

 db 254,253,252,251,250,248,247,245,243,241,239,236,234,231,229

 db 226,223,220,217,213,210,206,203,199,196,192,188,184,180,176

 db 171,167,163,159,154,180,146,141,137,132,128

 count dw 83

.code

start: mov ax,@data

 mov ds,ax

 mov al,80h ; All the ports are out put ports

 mov dx,ctrl

 out dx,al

agn : mov bx,05

back1: mov cx,count ; Load 83 values

 mov si,00h

back: mov al,table[si] ; Load each value from Look-up-table to al

 mov dx,pa

 out dx,al

 inc si

 loop back

 dec bx

 cmp bx,00

 jnz back1

 mov ah,06h ; direct console input or output

 mov dl,0ffh ; Read the character from the keyboard

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 50 -

 int 21h

 jz agn

 int 3

end start

Conclusion:

 This program generates a fully rectified sine wave of 5V amplitude. Output will

be seen in CRO. It stops execution as soon as key is pressed from the key board.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 51 -

Program No.12.A. Date:

Program to create a file (input file) and to delete an existing file

AIM:

Program to create a file (input file) and to delete an existing file.

.model small

.data

 string db "Enter the file name for the file to be created",13,10,'$'

 msg1 db 13,10,"The file cannot be created",13,10,'$'

 msg2 db 13,10,"File created successfully",13,10,'$'

 str1 db 40 dup(0)

 string1 db "Enter the file name to be deleted",13,10,'$'

 msg3 db 13,10,"The file cannot be deleted",13,10,'$'

 msg4 db 13,10,"File deleted successfully",13,10,'$'

 str2 db 40 dup(0)

.code

disp macro x ; Display macro

 lea dx, x

 mov ah, 09h

 int 21h

 endm

start: mov ax,@data

 mov ds,ax

 disp string ; Display String

 mov bx,00h

up: mov ah,01h ; Read the character from the keyboard

 int 21h

 cmp al,0dh

 je exit

 mov str1[bx],al

 inc bx

 jmp up

exit: mov str1[bx],'$'

 mov ah,3ch ; Create or truncate file

 mov cx,00h ; File Attributes

 mov dx,offset str1

 int 21h

 jc down

 disp msg2

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 52 -

 jmp down1

down: disp msg1

down1: disp string1

 mov bx,00h

up1: mov ah,01h

 int 21h

 cmp al,0dh

 je exit1

 mov str2[bx],al

 inc bx

 jmp up1

exit1: mov str2[bx],'$'

 mov ah,41h ; delete file .
 mov dx,offset str2

 int 21h

 jc down2 ; CF set on error, AX = error code.

 disp msg4 ; if successful, CF will be clear,

 ; and the value of AX is cleared

 jmp down3

down2: disp msg3

down3: int 3

end start

Conclusion:

This program creates a file in current root directory. If creation of file success it

will display a message “file created successfully”. After that it will delete the file from

the current directory. If deletion of file is success then it will display a message “file

deleted successfully”.

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 53 -

Program No.12.B. Date:

ELEVATOR

AIM:

 Drive an elevator interface in the following way:

 i. Initially the elevator should be in the ground floor, with all requests in OFF

 state.

 ii. When a request is made from a floor, the elevator should move to that floor,

 wait there for a couple of seconds (approximately), and then come down to

 ground floor and stop. If some requests occur during going up or coming

 down they should be ignored.

.model small

.data

pa equ 0c800h ;define port addresses

pb equ 0c801h

pc equ 0c802h

ctrl equ 0c803h ;define control word address

.code

Start: mov ax, @data

 mov ds, ax ;initialize data segment

 mov al, 82h ;initialize port A as output and port B as input port

 mov dx, ctrl

 out dx, al

 mov bl, 0 ; Initially display lift in ground floor

; PRESS ANY KEY TO EXIT

S1: call delay

 mov ah, 06h

 mov dl, 0ffh

 int 21h

 jz proceed ;if none of the key is pressed then jump to location proceed

 int 3 ;else terminate program execution

; PLACE LIFT IN GROUND FLOOR

proceed:call delay

 mov al, bl ;take floor number to AL

 or al, 0f0h ;set upper nibble of the number

 mov dx, pa

 out dx, al

 cmp bl, 0 ;check whether the lift is in ground floor or not

 jnz down ;if not in then jump to location down to move lift to ground floor

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 54 -

 jmp fchk ;else jump to location fchk to check the request from any floor

down: dec bl

jmp proceed

;CHECK REQUEST FROM ANY FLOOR

fchk: call chk ;call procedure chk to check is there request from any floor

 shr al, 01 ;shift right the request by 1 position

jnc gfr ;if carry is not set then request will be from ground

; floor and jump to location gfr

shr al, 01 ;else shirt right the request by 1 more position

 jnc ffr ;if carry is not set then request will be from 1st floor and

;jump to location ffr

 shr al, 01 ;else shirt right the request by 1 more position

 jnc sfr ;if carry is not set then request will be from 2nd floor

;and jump tp location sfr

shr al, 1 ;else shirt right the request by 1 more position

jnc tfr ;if carry is not set then request will be from 2nd floor

;and jump tp location sfr

jmp start ;else jump to start

gfr: call delay

mov al, 0e0h ;data to disable ground floor request

 mov dx, pa ;load port A address to DX reg.

 out dx, al ;send data to port A

 jmp S1 ;to repeat the process jump to location start

ffr: call delay

 mov bl, 3

 call floor

 mov al, 0d3h

 mov dx, pa

 out dx, al

 jmp S1

sfr: call delay

mov bl, 6

 call floor

 mov al, 0b6h

 mov dx, pa

 out dx, al

 jmp S1

tfr: call delay

mov bl, 9

 call floor

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 55 -

 mov al, 79h

 mov dx, pa

 out dx, al

 jmp S1

chk proc

 mov dx, pb

 in al,dx ;read data from port b

 or al,0f0h ;set upper nibble of the data

 cmp al,0ffh ;check is there any request or not

 jz chk ;if no request then jump to location chk

 ret ;else return to main program

chk endp ;end of procedure

floor proc

mov cl, 0

floor1: inc cl

mov al, cl

or al, 0f0h

mov dx, pa

out dx, al

call delay

cmp cl, bl

jnz floor1

ret

floor endp

delay proc

delay proc

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

delay endp

end start

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 56 -

Conclusion:

This program does the operation of lift as follows: always the lift will be in ground floor.

When a request comes from any other floor then the lift will go to that floor and waits for

some time and returns to ground floor. While executing the first request, other requests

are not recognized

Date: Signature of the staff

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 57 -

References:

1. The Intel Microprocessors: Eighth Edition: Bary B. Brey.

2. Microprocessors and Interfacing: Second Edition: D V Hall.

3. Advanced Microprocessors and Peripherals: A K Ray.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 58 -

ANNEXURES:

Instruction Set:

Instructions Operands Description

MOV

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

SREG, memory

memory, SREG

REG, SREG

SREG, REG

Copy operand2 to operand1.

The MOV instruction cannot:

 Set the value of the CS and IP registers.

 Copy value of one segment register to another segment

register (should copy to general register first).

 Copy immediate value to segment register (should copy to

general register first).

Algorithm: operand1 = operand2

Ex:

 Mov AX,BX ;Copy contents of BX to AX

 Mov si,00h ;load Si with 00h

MUL

REG

Memory

Unsigned multiply.
Multiply the contents of REG/Memory with contents of AL register.
Algorithm:

When operand is a byte:

AX = AL * operand.

When operand is a word:

(DX: AX) = AX * operand.

CMP

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Compare.

Algorithm: operand1 - operand2

Result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF,

CF) according to result.

JMP

Label

Unconditional Jump.

Transfers control to another part of the program. 4-byte address may

be entered in this form: 1234h: 5678h, first value is a segment

second value is an offset.

Algorithm: always jump

JA

Label

Jump If Above.

Short Jump if first operand is Above second operand (as set by CMP

instruction). Unsigned.

Algorithm: if (CF = 0) and (ZF = 0) then jump

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 59 -

JAE

Label

Jump If Above Or Equal

Short Jump if first operand is Above or Equal to second operand (as

set by CMP instruction). Unsigned.

Algorithm:

 if CF = 0 then jump

JB

Label

Jump If Below.

Short Jump if first operand is Below second operand (as set by CMP

instruction). Unsigned.

Algorithm:

if CF = 1 then jump

JBE

Label

Jump If Below Or Equal

Short Jump if first operand is Below second operand (as set by CMP

instruction). Unsigned.

Algorithm:

if CF = 1 then jump

JC

Label

Jump If Carry

Short Jump if Carry flag is set to 1.

Algorithm:

if CF = 1 then jump

JE

Label

Jump If Equal.

Short Jump if first operand is Equal to second operand (as set by

CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

JG

Label

Jump If Greater

Short Jump if first operand is Greater then second operand (as set by

CMP instruction). Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 60 -

JGE

Label

Jump If Greater Or Equal.

Short Jump if first operand is Greater or Equal to second operand (as

set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

JL

Label

Jump If Less than.

Short Jump if first operand is Less then second operand (as set by

CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

JLE

Label

Jump If Less Or Equal.

Short Jump if first operand is Less or Equal to second operand (as

set by CMP instruction). Signed.

Algorithm:

if SF <> OF or ZF = 1 then jump

JNZ

Label

Jump If Non Zero.

Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST,

AND, OR, XOR instructions.

Algorithm:

if ZF = 0 then jump

JZ

Label

Jump If Zero.

Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND,

OR, XOR instructions.

Algorithm:

if ZF = 1 then jump

LEA

REG, memory

Load Effective Address.

Algorithm:

 REG = address of memory (offset)

LOOP

Label

Decrease CX, jump to label if CX not zero.

Algorithm:

 CX = CX - 1

 if CX <> 0 then

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 61 -

o jump

else

o no jump, continue

ADD

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Add.

Algorithm:

operand1 = operand1 + operand2

AND

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical AND between all bits of two operands. Result is stored in

operand1.

These rules apply:

1 AND 1 = 1; 1 AND 0 = 0

0 AND 1 = 0; 0 AND 0 = 0

OR

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical OR between all bits of two operands. Result is stored in first

operand.

These rules apply:

1 OR 1 = 1; 1 OR 0 = 1

0 OR 1 = 1; 0 OR 0 = 0

SUB

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Subtract.

Algorithm:

operand1 = operand1 - operand2

DAA

No Operands

Decimal adjust After Addition.
Corrects the result of addition of two packed BCD values.

Algorithm:
if low nibble of AL > 9 or AF = 1 then:

 AL = AL + 6

 AF = 1

if AL > 9Fh or CF = 1 then:

 AL = AL + 60h

 CF = 1

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 62 -

DAS

No Operands

Decimal adjust After Subtraction.

Corrects the result of subtraction of two packed BCD values.

Algorithm:
if low nibble of AL > 9 or AF = 1 then:

 AL = AL - 6

 AF = 1

if AL > 9Fh or CF = 1 then:

 AL = AL - 60h

 CF = 1

INC

REG

memory

Increment.

Algorithm: operand = operand + 1

DEC

REG

Memory

Decrement.

Algorithm: operand = operand – 1

DIV

REG

Memory

Unsigned divide.

Algorithm:

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

SHL

memory, immediate

REG, immediate

memory, CL

REG, CL

Shift Left.

Shift operand1 Left. The number of shifts is set by operand2.

Algorithm:

 Shift all bits left, the bit that goes off is set to CF.

 Zero bit is inserted to the right-most position.

SHR

memory, immediate

REG, immediate

memory, CL

REG, CL

Shift Right.

Shift operand1 Right. The number of shifts is set by operand2.

Algorithm:

 Shift all bits right, the bit that goes off is set to CF.

 Zero bit is inserted to the left-most position.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 63 -

ROL

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate Left.

Rotate operand1 left. The number of rotates is set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF and the

same bit is inserted to the right-most position.

ROR

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate Right.

Rotate operand1 right. The number of rotates is set by operand2.

Algorithm:

Shift all bits right, the bit that goes off is set to CF and the

same bit is inserted to the left-most position.

RCL

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate operand1 left through Carry Flag. The number of rotates is

set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF and

previous value of CF is inserted to the right-most position.

Example:

STC ; set carry (CF=1).

MOV AL, 1Ch ; AL = 00011100b

RCL AL, 1 ; AL = 00111001b, CF=0.

RET

C O

r r

OF=0 if first operand keeps original sign.

CALL

procedure name

label

Transfers control to procedure, return address is (IP) pushed to

stack.

RET

No operands

Or even immediate

date

Return from near procedure.

Algorithm:

 Pop from stack:

o IP

if immediate operand is present: SP = SP + operand

IN

AL, im.byte

AL, DX

AX, im.byte

AX, DX

Input from port into AL or AX.

Second operand is a port number. If required to access port number

over 255 - DX register should be used.

OUT

AL, im.byte

AL, DX

AX, DX

Output from AL or AX to port.

First operand is a port number. If required to access port number

over 255 - DX register should be used.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 64 -

POP

REG

SREG

memory

Get 16 bit value from the stack.

Algorithm: Operand = SS : [SP](top of stack)

 SP = Sp + 2.

PUSH

REG

SREG

memory

Store 16 bit value in the stack.

Algorithm:

 SP = SP - 2

 SS:[SP] (top of the stack) = operand

XOR

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical XOR (Exclusive OR) between all bits of two operands.

Result is stored in first operand.

These rules apply:

1 XOR 1 = 0; 1 XOR 0 = 1

0 XOR 1 = 1; 0 XOR 0 = 0

XCHG

REG, memory

memory, REG

REG, REG

Exchange values of two operands.

Algorithm: operand1 < - > operand2

XLAT

No Operands

Translate byte from table.

Copy value of memory byte at DS:[BX + unsigned AL] to AL

register.

Algorithm: AL = DS:[BX + unsigned AL]

AAA

No Operands

ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with

BCD values.

 Algorithm:

if low nibble of AL > 9 or AF = 1 then:

 AL = AL + 6

 AH = AH + 1

 AF = 1

 CF = 1

else

 AF = 0

 CF = 0

in both cases:

clear the high nibble of AL.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 65 -

Example:

MOV AX, 15 ; AH = 00, AL = 0Fh

AAA ; AH = 01, AL = 05

AAS

No Operands

ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with

BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

 AL = AL - 6

 AH = AH - 1

 AF = 1

 CF = 1

else

 AF = 0

 CF = 0

in both cases:

clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh

AAS ; AH = 01, AL = 09

AAM

No Operands

ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.

Algorithm:

 AH = AL / 10

 AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh

AAM ; AH = 01, AL = 05

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 66 -

INTERRUPTS:

Interrupt INT 21h:
INT 21h calls DOS functions.

Function 01h - Read character from standard input, result is stored in AL. If there is

no character in the keyboard buffer, the function waits until any key is pressed.

Invoked by: AH = 01h

Returns: AL = character entered.

Example:

 Mov AH, 01h

 INT 21h

Function 02h - Write a character to standard output.

INT 21h
Invoked by: DL = character to write.

 AH =02h

After execution AL = DL.

Example:
 Mov AH, 02h

 Mov DL, ’a’ ; Character to be displayed on screen must be stored in DL reg.

 INT 21h

Function 02h- set cursor position.

INT 10h / AH = 2 - set cursor position.

input:
DH = row.

DL = column.
BH = page number (0..7).

Function 03h- get cursor position and size.

INT 10h / AH = 03h -

input:
BH = page number.

return:

DH = row.
DL = column.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 67 -

CH = cursor start line.

CL = cursor bottom line.

Function 06h – Direct console for input/output. If DL = 0FFH on entry, then this

function reads the console. If DL = ASCII character, then this function displays the

ASCII character on the console video screen.

Invoked by: Parameters for O/P: DL = 0…255

 Parameters for I/P: DL = 255.

Returns: for O/P: AL = DL.

 For I/P: ZF set if no character available & AL = 0

 ZF clear if character available & AL = character.

Example:

 mov ah, 6

 mov dl, 'a'

 int 21h ; output character.

 mov ah, 6

 mov dl, 255

 int 21h ; get character from keyboard buffer (if any) or set ZF=1.

Function 09h - Write a string to standard output at DS: DX.

String must be terminated by '$'. The string can be of any length and may contain control

characters such as carriage return (0DH) and line feed (0AH).

Invoked by: DS = string to write.

 AH = 09h

Example:

 Mov AH, 09h

 Mov DX, offset str ; Address of the string to be displayed

 INT 21h

Function 2Ch - Get system time.

Invoked by: AH =2Ch

Return: CH = hour. CL = minute. DH = second. DL = 1/100 seconds.

Example:

 Mov AH, 2ch

 INT 21h

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 68 -

Function 3Ch - Create or truncate file.

Invoked by: CX = file attributes:

 mov cx, 0 ; normal - no attributes.

 mov cx, 1 ; read-only.

 mov cx, 2 ; hidden.

 mov cx, 4 ; system

 mov cx, 7 ; hidden, system and read-only!

 mov cx, 16 ; archive

mov cx, 0BH ; Volume label

mov cx, 10H ; Subdirectory

DS: DX -> filename. ; AH =3Ch

Returns:

CF clear if successful, AX = file handle.

CF set on error AX = error code.

Example:

 Mov AH, 3ch

 Mov CX, 01

 Mov DX, offset Filename

 INT 21h

Function 41h - Delete file (unlink).

Invoked by: DS: DX -> ASCIZ filename (no wildcards, but see notes).

 AH=41h

Return:

CF clear if successful, AX destroyed.

CF set on error AX = error code.

Example:

 Mov AH, 41h

 Mov DX, offset Filename

 INT 21h

Function 4Ch – Terminate a process.

Invoked by: AH = 4ch

Return: returns control to the operating system.

Example:

 Mov AH, 4Ch

 INT 21h

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 69 -

Interrupt INT 10h:

INT 10h calls the BIOS functions. This interrupt often called the video services

interrupt as it directly controls the video display in a system.

Function 02h - Set cursor position.

Invoked by: DH = row; DL = column; BH = page number (0...7); AH=02h.

Example:

 MOV AH, 02h

 MOV BH, 00

 MOV DH, 06

 MOV DL, 10

 INT 10h

Function 03h – Get cursor position.

Invoked by: BH = page number. (In general 0)

 AH = 03h

Return: DH = row number; DL = column number; CH = cursor start line;

 CL = cursor bottom line.

Example:

 Mov BH, 0

 Mov AH, 03h

 INT 10h

Function 06h – Scroll up window

Invoked by: AL = number of lines by which to scroll. (00h = clear the entire screen.)

 BH = attribute used to write blank lines at bottom of window.

 CH, CL = row, column of window's upper left corner.

 DH, DL = row, column of window's lower right corner.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 70 -

Circuit diagrams of interfacing devices

1. Logic Controller Interface

Logic controllers find extensive application in industries for the programming of

processes. The nature of control would range from a simple ON/OFF type of control ro

complex systems implementing sophisticated control algorithms while accepting multiple

inputs and actuating multiple outputs. A controller would typically, accept a number of

inputs from transducers like sensors/limit switches, key inputs etc.. perform a sequence of

logical and arithmetic opertaions on them and use the result to maitain the process within

specified safe operating conditions while providing information on the status of the

process at any instant of time.The logic controller interface consits essentially of two 8

bit ports, an input and an output port. The inputs and outputs are connected to the user

systems. The logic state fo each input and output is indicated by LEDs and all signals are

TTL compatible. The input signals are connected to port B of 82C55A while output lines

are driven from port A.

Some of the cpabilities of theis interface are:

a. Programmable Counter b. Sequential Counter c. Combinational Controller.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 71 -

2. Seven Segment Display

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 72 -

The hardware uses four shift register ICs 74164. 74164 is an 8-bit serial in-parallel out

shift register with asynchronous reset and two input pins. It requires 8 clock cycles at

“CLK” pin to shift the serial data from input to 8 parallel outputs. After 8 shifts, the first

serial bit will be in output QH, and only now the data at output is valid. To cascade more

74164 shift register IC need to connect the last output QH to the input of second shift

register.

The output is connected to the cathode of the LEDs in the 7 segment display and thus

common anode displays are used. The anode is connected to +Vcc. The last output of the

first sift register is connected to input of the 2nd shift register and the last output o f 2nd

shift register to input of 3rd and so on. Thus the shift register are serial in parallel out and

they are connected to displays, in such a way that output 0A is connected to display

segment ‘a’ and 0B to ‘b’ and so on up to 0H; through 330 ohm resistors.

The shifting of data bit takes place for each clock cycle. 7404 IC used provides isolation

and the interface board gets 5V through port bit.

Pin 1 is used as data pin and pin 2 is used as other input to Vcc. The clock signal is

generated at a port bit which will be connected to the clock of the shift register.

PB0 is used for data bit; and PC0 for clock through which a falling edge has to be sent.

The microprocessor stores the display information in a RAM. Each time a display has to

be updated the microprocessor fetches all bytes one by one from RAM and outputs

corresponding display codes serially that is bit by bit to display. Hexadecimal code is

stores in the RAM. The code conversion from hexa to 7 segment is done just before the

display is updated.

The 7 segment display is used as a numerical indicator on many types of test equipment.

It is an assembly of light emitting diodes which can be powered individually. There are

two important types of 7-segment LED display.

In a common cathode display, the cathodes of all the LEDs are joined together and the

individual segments are illuminated by HIGH voltages.

In a common anode display, the anodes of all the LEDs are joined together and the

individual segments are illuminated by connecting to a LOW voltage.

Display code

Since the outputs of shift registers are connected to cathode sides of displays, low input

must be given to segments for making them glow and high inputs for making them blank.

Each display has 8 segments (a, b, c, d, e, f, g, h) as shown. For displaying any character

the corresponding segment must be given low inputs.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 73 -

The one shown above is a common anode display since all anodes are joined together and

go to the positive supply. The cathodes are connected individually to zero volts. Resistors

must be placed in series with each diode to limit the current through each diode to a safe

value. The d.p represents a decimal point.

The following table shows how to form characters: '0' means that pin is connected to

ground. '1' means that pin is connected to Vcc.

 d.p g f e d c b a Hex. value

0 1 1 0 0 0 0 0 0 C0

1 1 1 1 1 1 0 0 1 F9

2 1 0 1 0 0 1 0 0 A4

3 1 0 1 1 0 0 0 0 B0

4 1 0 0 1 1 0 0 1 99

5 1 0 0 1 0 0 1 0 92

6 1 0 0 0 0 0 1 0 82

7 1 1 1 1 1 0 0 0 F8

8 1 0 0 0 0 0 0 0 80

9 1 0 0 1 1 0 0 0 98

F 1 0 0 0 1 1 1 0 8e

I 1 1 1 1 1 0 0 1 F9

R 1 0 0 0 1 0 0 0 88

E 1 0 0 0 0 1 1 0 86

3. Stepper Motor:

A stepper motor is a widely used device that translates electrical pulses into mechanical

movement. In applications such as disk drives, dot matrix printers, and robotics, the

stepper motor is used for Position control.

Every stepper motor has a permanent magnet rotor (also called the shaft.) surrounded by

a stator. The most common stepper motors have four common stator windings that are

pairs with a center-taped common. This type of stepper motor is commonly referred to as

a four-phase stepper motor.

A Stepper motor is stepped from one position to the next by changing the currents

through the fields in the motor. Common step sizes for stepper motors range from 0.9

degrees to 30 degrees.

82C55A is used to provide the drive signals that are used to rotate the armature of the

motor in either the right-hand or left-hand direction.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 74 -

The power circuit for one winding of the stepper motor is as shown in figure above. It is

connected to the port A (PA0) of 82C55A. Similar circuits are connected to the remaining

lower bits of port A (PA1, PA2, PA3). One winding is energized at a time. The coils are

turned ON/OFF one at a time successively.

The stepper motor showing full-step operation is shown below.

(A) 45-degrees. (B) 135-degrees (C) 225-degrees (D) 315-degrees.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 75 -

4. Matrix Keyboard Display:

The rows are connected to an output port and the columns are connected to an input port.

If no key has been pressed, reading the input port will yields 0s for all columns since they

are all connected to ground. If all the rows are high and a key is pressed, one of the

columns will have 1 since the key pressed provides the path to high. It is the function of

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 76 -

the microprocessor to scan the keyboard continuously to detect and identify the key

pressed.

Label on

the keytop

Hex code Label on

the key top

Hex code

0 0 - 0C

1 1 X 0D

2 2 / 0E

3 3 % 0F

4 4 AC 10

5 5 CE 11

6 6 CHK 12

7 7 = 13

8 8 MC 14

9 9 MR 15

. 0A M 16

+ 0B M+ 17

Process of identifying the key pressed:

To detect a pressed key, the micro processor set high all rows by providing 1 to the

output latch, then it reads the columns. If the data read from the columns is PA0-PA7 =

00000000, no key has been pressed and process continues until a key press is detected.

If one of the column bits has a high, this means that a key press has occurred.

For example, if PA0-PA7 = 00001000, this means that a key in the PA4 column has been

pressed.

After a key press is detected, the micro processor will go through the process of

identifying the key. Now micro processor sets each row to ground then it reads the

columns. If the data read is all 0s, no key in that row is activated and the process is

moved to next row. It grounds the next row, reads the columns, and checks for any 1.

This process continues until the row is identified. After identification of the row in which

the key has been pressed, the next task is to find out which column the pressed key

belongs to.

To identify the key press, it rotates the column bits, one bit at a time, into the carry flag

and checks to see if it is high. Upon finding the 1, it pulls out the ASCII code for that key

from the look-up table; otherwise, it increments the pointer to point to the next element of

the look-up table.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 77 -

5. DAC INTERFACE

The pin details of DAC 0800 is given below and schematic diagram of the dual DAC

interface is given below.

The port A and port B of 82C55A peripheral are used as output ports. The digital inputs

to the DACs are porvided through these ports. The analog outputs of the DACs are

connected to the inverting inputs of OP-amps 741 which acts as current to voltage

converters. The outputs from the OP-amps are connected to points marked X out and Y

out at which the waveforms are observed on a CRO. The power supplies of +12 and -12

are regulated for this interface.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 78 -

6. Elevator Interface.

The above figure gives hardware details required for the simulation of the elevator.

This interface has four keys, marked 0, 1, 2, and 3(In above fig K1, K2, K3, K4)

representing the request buttons at the four floors. These keys are connected to preset

(PR) of the D flip-flop. If this key is closed the output goes low and it goes high and thus

the corresponding request LED will be ON.

The outputs of the four Flip-flops (74LS74) can be read through port B (PBO, PBI, PB2

and PB3) so that the floor at which request is required is known and the same will be

serviced. Also, the status of these signals is reflected by a setoff 4 LED’s which are called

as request LEDs whose cathode are connected to outputs of four flip-flops; while anodes

are connected to +5v as shown in figure. The Flip-Flop can be rest (LED’s are cleared)

through higher bits of port A (PA4, PA5, PA6, and PA7) so that after servicing the floor

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 79 -

at which request was done the corresponding request LED is turned OFF, sending a low

to the flip-flop through port A.

A column of 10 LED’s, representing the elevator can be controlled through Port A (PA0,

PA1, PA2 and PA3). These port lines are fed to the inputs of the BCD to decimal decoder

IC7442 whose outputs are active-low used to control the on/off states of the LED’s which

simulate the motion of the elevator. These LEDS have their cathodes connected to the

outputs of the decoder through the resistors and the anodes are commonly connected to

the +5v supply as shown in the figure. As the output of BCD decoders are active low and

logic low on output causes the corresponding LED goes ON. For Example, If 0010 is the

input to the decoder then line 2 goes low and the third LED goes ON.

The motion of elevator can be simulated by turning on successive LED’s one at a time.

The delay between turning off one LED and turning on the next LED can simulate the

“speed” of the elevator.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 80 -

Viva Questions and Answers

1. What is a Microprocessor?

ANS: Microprocessor is a program-controlled device, which fetches the instructions from

memory, decodes and executes the instructions. Most Micro Processor are single- chip

devices.

2. What is the difference between 8086 and 8088?

ANS: The BIU in 8088 is 8-bit data bus & 16- bit in 8086.Instruction queue is 4 byte

long in 8088and 6 byte in 8086.

3. what are the functional units in 8086?

ANS: 8086 has two independent functional units because of that the processor speed is

more. The Bus interface unit and Exectuion unit are the two functional units.

4. What are the flags in 8086?

ANS: In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag,

Trace flag, Interrupt flag, Direction flag, and Sign flag.

5. What is the Maximum clock frequency in 8086?

ANS: 5 Mhz is the Maximum clock frequency in 8086.

6. What are the various segment registers in 8086?

ANS: Code, Data, Stack, Extra Segment registers in 8086.

7. Logic calculations are done in which type of registers?

ANS: Accumulator is the register in which Arithmetic and Logic calculations are done.

8. How 8086 is faster than 8085?

ANS: Because of pipelining concept. 8086 BIU fetches the next instruction when EU

busy in executing the anoter instruction.

9. What does EU do?

ANS: Execution Unit receives program instruction codes and data from BIU, executes

these instructions and store the result in general registers.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 81 -

10. Which Segment is used to store interrupt and subroutine return address

registers?

ANS: Stack Segment in segment register is used to store interrupt and subroutine return

address registers.

11. What does microprocessor speed depend on?

ANS: The processing speed depends on DATA BUS WIDTH.

12. What is the size of data bus and address bus in 8086?

ANS: 8086 has 16-bit data bus and 20- bit address bus.

13. What is the maximun memory addressing capability of 8086?

ANS: The maximum memory capability of 8086 is 1MB.

14. What is flag?

ANS: Flag is a flip-flop used to store the information about the status of a processor and

the status of the instruction executed most recently.

15. Which Flags can be set or reset by the programmer and also used to control the

operation of the processor?

ANS: Trace Flag, Interrupt Flag, Direction Flag.

16. In how many modes 8086 can be opertaed and how?

ANS: 8086 can be opertaed in 2 modes. They are Minimum mode if MN/MX pin is

active high and Maximum mode if MN/MX pin is ground.

17. What is the difference between min mode and max mode of 8086?

ANS: Minimum mode operation is the least expensive way to operate the 8086

microprocessor because all the control signals for the memory and I/O are generated by

the micro processor. In Maximum mode some of the control signals must be externally

generatred. This requires the addition of an external bus controller. It used only when the

system contains external coprocessors such as 8087 arithmetic coprocessor.

18. Which bus controller used in maximum mode of 8086?

ANS: 8288 bus controller is used to provide the signals eliminated from the 8086 by the

maximum mode operation.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 82 -

19. What is stack?

ANS: Stack is a portion of RAM used for saving the content of Program Counter and

general purpose registers.

20. Which Stack is used in 8086?

ANS: FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored

information is retrieved first.

21. What is the position of the Stack Pointer after the PUSH instruction?

ANS: The address line is 02 less than the earlier value.

22. What is the position of the Stack Pointer after the POP instruction?

ANS: The address line is 02 greater than the earlier value.

23. What is interrupt?

ANS: Interrupt is a signal send by external device to the processor so as to request the

processor to perform a particular work.

 24. What are the various interrupts in 8086?

ANS: Maskable interrupts, Non-Maskable interrupts.

25. What is meant by Maskable interrupts?

ANS: An interrupt that can be turned off by the programmer is known as Maskable

interrupt.

26. What is Non-Maskable interrupts?

ANS: An interrupt which can be never be turned off (ie.disabled) is known as Non-

Maskable interrupt.

27. Which interrupts are generally used for critical events?

ANS: Non-Maskable interrupts are used in critical events. Such as Power failure,

Emergency, Shut off etc.,

28. Give example for Non-Maskable interrupts?

ANS: Trap is known as Non-Maskable interrupts, which is used in emergency condition.

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 83 -

29. Give examples for Maskable interrupts?

ANS: RST 7.5, RST6.5, RST5.5 are Maskable interrupts. When RST5.5 interrupt is

received the processor saves the contents of the PC register into stack and branches to

2Ch (hexadecimal) address.

When RST6.5 interrupt is received the processor saves the contents of the PC register

into stack and branches to 34h (hexadecimal) address.

When RST7.5 interrupt is received the processor saves the contents of the PC register

into stack and branches to 3Ch (hexadecimal) address.

30. What is SIM and RIM instructions?

ANS: SIM is Set Interrupt Mask. Used to mask the hardware interrupts. RIM is Read

Interrupt Mask. Used to check whether the interrupt is Masked or not.

31. What is macro?

ANS: Macro is a set of instructions that perform a task and all the isntructions defined in

it is inserted in the program at the point of usage.

32. What is the difference between Macro and Procedure?

ANS: A procedure is accessed via a CALL instruction and a macro will inserted in the

program at the point of execution.

33. What is meant by LATCH?

ANS: Latch is a D- type flip-flop used as a temporary storage device controlled by a

timing signal, which can store 0 or 1. The primary function of a Latch is data storage. It is

used in output devices such as LED, to hold the data for display

34. What is a compiler?

ANS: Compiler is used to translate the high-level language program into machine code

at a time. It doesn.t require special instruction to store in a memory, it stores

automatically. The Execution time is less compared to Interpreter.

35. What is the disadvantage of microprocessor?

ANS: It has limitations on the size of data. Most Microprocessor does not support

floating-point operations.

36. What is the 82C55A device?

10CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 84 -

ANS: The 8255A/82C55A interfaces peripheral I/O devices to the microcomputer system

bus. It is programmable by the system software. It has a 3-state bi-directional 8-bit buffer

which interfaces the 8255A/82C55A to the system data bus.

37. What kind of input/output interface dose a PPI implement?

ANS: It provides a parallel interface, which includes features such as single-bit, 4-bit, and

byte-wide input and output ports; level-sensitive inputs; latched outputs; strobed inputs or

outputs; and strobed bidirectional input/outputs.

38. How many I/O lines are available on the 82C55A?

ANS: 82C55A has a total of 24 I/O lines.

39. Describes the mode 0, mode 1, and mode 2 operations of the 82C55A?

ANS: MODE 0: Simple I/O mode. In this mode, any of the ports A, B, and C can be

programmed as input or output. In this mode, all the bits are out or in.

MODE 1: Ports A and B can be used as input or output ports with handshaking

capabilities. Handshaking signals are provided by the bits of port C.

MODE 2: Port A can be used as a bidirectional I/O port with handshaking capabilities

whose signals are provided by port C. Port B can be used either in simple I/O mode or

handshaking mode 1.

40. What is the mode and I/O configuration for ports A, B, and C of an 82C55A

after its control register is loaded with 82H?

ANS: If control register is loaded with 82H, then the port B is configured as an input

port, port A and port C are configured as output ports and in mode 0.

