
Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 1

PART-A

Introduction to NS-2:

¶ Widely known as NS2, is simply an event driven simulation tool.

¶ Useful in studying the dynamic nature of communication networks.

¶ Simulation of wired as well as wireless network functions and protocols (e.g., routing

algorithms, TCP, UDP) can be done using NS2.

¶ In general, NS2 provides users with a way of specifying such network protocols and

simulating their corresponding behaviors.

Basic Architecture of NS2

Tcl scripting

Å Tcl is a general purpose scripting language. [Interpreter]

Å Tcl runs on most of the platforms such as Unix, Windows, and Mac.

Å The strength of Tcl is its simplicity.

Å It is not necessary to declare a data type for variable prior to the usage.

Basics of TCL

Syntax: command arg1 arg2 arg3

¹ Hello World!

puts stdout{Hello, World!}

 Hello, World!

¹ Variables Command Substitution

set a 5 set len [string length foobar]

set b $a set len [expr [string length foobar] + 9]

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 2

¹ Simple Arithmetic

 expr 7.2 / 4

¹ Procedures

proc Diag {a b} {

set c [expr sqrt($a * $a + $b * $b)]

 return $c }

puts ñDiagonal of a 3, 4 right triangle is [Diag 3 4]ò

Output: Diagonal of a 3, 4 right triangle is 5.0

¹ Loops

 while{$i < $n} { for {set i 0} {$i < $n} {incr i} {

 } }

Wired TCL Script Components

Create the event scheduler

Open new files & turn on the tracing

Create the nodes

Setup the links

Configure the traffic type (e.g., TCP, UDP, etc)

Set the time of traffic generation (e.g., CBR, FTP)

Terminate the simulation

NS Simulator Preliminaries.

1. Initialization and termination aspects of the ns simulator.

2. Definition of network nodes, links, queues and topology.

3. Definition of agents and of applications.

4. The nam visualization tool.

5. Tracing and random variables.

Initialization and Termination of TCL Script in NS -2

An ns simulation starts with the command

Which is thus the first line in the tcl script? This line declares a new variable as using the set

command, you can call this variable as you wish, In general people declares it as ns because

set ns [new Simulator]

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 3

it is an instance of the Simulator class, so an object the code[new Simulator] is indeed the

installation of the class Simulator using the reserved word new.

In order to have output files with data on the simulation (trace files) or files used for

visualization (nam files), we need to create the files using ñopenò command:

#Open the Trace file

#Open the NAM trace file

The above creates a data trace file called ñout.trò and a nam visualization trace file

called ñout.namò. Within the tcl script, these files are not called explicitly by their names, but

instead by pointers that are declared above and called ñtracefile1ò and ñnamfileò respectively.

Remark that they begin with a # symbol. The second line open the file ñout.trò to be used for

writing, declared with the letter ñwò. The third line uses a simulator method called trace-all

that have as parameter the name of the file where the traces will go.

 The last line tells the simulator to record all simulation traces in NAM input format. It

also gives the file name that the trace will be written to later by the command $ns flush-trace.

In our case, this will be the file pointed at by the pointer ñ$namfileò, i.e the file ñout.trò.

 The termination of the program is done using a ñfinishò procedure.

#Define a ófinishô procedure

set tracefile1 [open out.tr w]

$ns trace-all $tracefile1

set namfile [open out.nam w]

$ns namtrace-all $namfile

Proc finish {} {

global ns tracefile1 namfile

$ns flush-trace

Close $tracefile1

Close $namfile

Exec nam out.nam &

Exit 0

}

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 4

The word proc declares a procedure in this case called finish and without arguments.

The word global is used to tell that we are using variables declared outside the procedure.

The simulator method ñflush-traceò will dump the traces on the respective files. The tcl

command ñcloseò closes the trace files defined before and exec executes the nam program for

visualization. The command exit will ends the application and return the number 0 as status

to the system. Zero is the default for a clean exit. Other values can be used to say that is a exit

because something fails.

 At the end of ns program we should call the procedure ñfinishò and specify at what

time the termination should occur. For example,

will be used to call ñfinishò at time 125sec.Indeed,the at method of the simulator allows us to

schedule events explicitly.

 The simulation can then begin using the command

Definition of a network of links and nodes

The way to define a node is

The node is created which is printed by the variable n0. When we shall refer to that node in

the script we shall thus write $n0.

 Once we define several nodes, we can define the links that connect them. An example

of a definition of a link is:

Which means that $n0 and $n2 are connected using a bi-directional link that has 10ms

of propagation delay and a capacity of 10Mb per sec for each direction.

 To define a directional link instead of a bi-directional one, we should replace ñduplex-

linkò by ñsimplex-linkò.

 In NS, an output queue of a node is implemented as a part of each link whose input is

that node. The definition of the link then includes the way to handle overflow at that queue.

In our case, if the buffer capacity of the output queue is exceeded then the last packet to

arrive is dropped. Many alternative options exist, such as the RED (Random Early Discard)

Ϸƴǎ ŀǘ мнрΦл άŦƛƴƛǎƘέ

$ns run

set n0 [$ns node]

$ns duplex-link $n0 $n2 10Mb 10ms DropTail

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 5

mechanism, the FQ (Fair Queuing), the DRR (Deficit Round Robin), the stochastic Fair

Queuing (SFQ) and the CBQ (which including a priority and a round-robin scheduler).

 In ns, an output queue of a node is implemented as a part of each link whose input is

that node. We should also define the buffer capacity of the queue related to each link. An

example would be:

Agents and Applications

 We need to define routing (sources, destinations) the agents (protocols) the

application that use them.

FTP over TCP

 TCP is a dynamic reliable congestion control protocol. It uses Acknowledgements

created by the destination to know whether packets are well received.

 There are number variants of the TCP protocol, such as Tahoe, Reno, NewReno,

Vegas. The type of agent appears in the first line:

The command $ns attach-agent $n0 $tcp defines the source node of the tcp connection.

The command

Defines the behavior of the destination node of TCP and assigns to it a pointer called sink.

#Setup a UDP connection

#set Queue Size of link (n0-n2) to 20

$ns queue-limit $n0 $n2 20

set tcp [new Agent/TCP]

set sink [new Agent /TCPSink]

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n5 $null

$ns connect $udp $null

$udp set fid_2

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 6

#setup a CBR over UDP connection

Above shows the definition of a CBR application using a UDP agent

 The command $ns attach-agent $n4 $sink defines the destination node. The

command $ns connect $tcp $sink finally makes the TCP connection between the source and

destination nodes.

 TCP has many parameters with initial fixed defaults values that can be changed if

mentioned explicitly. For example, the default TCP packet size has a size of 1000bytes.This

can be changed to another value, say 552bytes, using the command $tcp set packetSize_

552.

 When we have several flows, we may wish to distinguish them so that we can identify

them with different colors in the visualization part. This is done by the command $tcp set

fid_ 1 that assigns to the TCP connection a flow identification of ñ1ò.We shall later give the

flow identification of ñ2ò to the UDP connection.

CBR over UDP

A UDP source and destination is defined in a similar way as in the case of TCP.

 Instead of defining the rate in the command $cbr set rate_ 0.01Mb, one can define the

time interval between transmission of packets using the command.

The packet size can be set to some value using

Scheduling Events

NS is a discrete event based simulation. The tcp script defines when event should

occur. The initializing command set ns [new Simulator] creates an event scheduler, and

events are then scheduled using the format:

set cbr [new

Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set packetsize_ 100

$cbr set rate_ 0.01Mb

$cbr set random_ false

$cbr set interval_ 0.005

$cbr set packetSize_ <packet size>

$ns at <time><event>

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 7

 The scheduler is started when running ns that is through the command $ns run.

The beginning and end of the FTP and CBR application can be done through the following

command

Structure of Trace Files

When tracing into an output ASCII file, the trace is organized in 12 fields as follows

in fig shown below, The meaning of the fields are:

Event Time From

Node

To

Node

PKT

Type

PKT

Size

Flags Fid Src

Addr

Dest

Addr

Seq

Num

Pkt

id

1. The first field is the event type. It is given by one of four possible symbols r, +, -, d which

correspond respectively to receive (at the output of the link), enqueued, dequeued and

dropped.

2. The second field gives the time at which the event occurs.

3. Gives the input node of the link at which the event occurs.

4. Gives the output node of the link at which the event occurs.

5. Gives the packet type (eg CBR or TCP)

6. Gives the packet size

7. Some flags

8. This is the flow id (fid) of IPv6 that a user can set for each flow at the input Of Tcl script

one can further use this field for analysis purposes; it is also used when specifying stream

color for the NAM display.

9. This is the source address given in the form of ñnode.portò.

10. This is the destination address, given in the same form.

11. This is the network layer protocolôs packet sequence number. Even though UDP

implementations in a real network do not use sequence number, ns keeps track of UDP

packet sequence number for analysis purposes

12. The last field shows the Unique id of the packet.

Ϸƴǎ ŀǘ лΦм άϷŎōǊ ǎǘŀǊǘέ

Ϸƴǎ ŀǘ мΦл ά ϷŦǘǇ ǎǘŀǊǘέ

Ϸƴǎ ŀǘ мнпΦл άϷŦǘǇ ǎǘƻǇέ

Ϸƴǎ ŀǘ мнпΦр άϷŎōǊ ǎǘƻǇέ

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 8

XGRAPH

The xgraph program draws a graph on an x-display given data read from either data

file or from standard input if no files are specified. It can display upto 64 independent data

sets using different colors and line styles for each set. It annotates the graph with a title, axis

labels, grid lines or tick marks, grid labels and a legend.

Syntax:

Options are listed here

/-bd <color> (Border)

 This specifies the border color of the xgraph window.

/-bg <color> (Background)

 This specifies the background color of the xgraph window.

/-fg<color> (Foreground)

 This specifies the foreground color of the xgraph window.

/-lf <fontname> (LabelFont)

 All axis labels and grid labels are drawn using this font.

/-t<string> (Title Text)

 This string is centered at the top of the graph.

/-x <unit name> (XunitText)

 This is the unit name for the x-axis. Its default is ñXò.

/-y <unit name> (YunitText)

 This is the unit name for the y-axis. Its default is ñYò.

Xgraph [options] file-name

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 9

Awk- An Advanced

awk is a programmable, pattern-matching, and processing tool available in UNIX. It

works equally well with text and numbers.

awk is not just a command, but a programming language too. In other words, awk

utility is a pattern scanning and processing language. It searches one or more files to see if

they contain lines that match specified patterns and then perform associated actions, such as

writing the line to the standard output or incrementing a counter each time it finds a match.

Syntax:

Here, selection_criteria filters input and select lines for the action component to act

upon. The selection_criteria is enclosed within single quotes and the action within the curly

braces. Both the selection_criteria and action forms an awk program.

Example: $ awk ó/manager/ {print}ô emp.lst

Variables

Awk allows the user to use variables of there choice. You can now print a serial

number, using the variable kount, and apply it those directors drawing a salary exceeding

6700:

$ awk ïFò|ò ó$3 == ñdirectorò && $6 > 6700 {

kount =kount+1

printf ñ %3f %20s %-12s %d\nò, kount,$2,$3,$6 }ô empn.lst

THE ïf OPTION: STORING awk PROGRAMS IN A FILE

You should holds large awk programs in separate file and provide them with the awk

extension for easier identification. Letôs first store the previous program in the file

empawk.awk:

$ cat empawk.awk

Observe that this time we havenôt used quotes to enclose the awk program. You can

now use awk with the ïf filename option to obtain the same output:

THE BEGIN AND END SECTIONS

Awk statements are usually applied to all lines selected by the address, and if there are

no addresses, then they are applied to every line of input. But, if you have to print something

ŀǿƪ ƻǇǘƛƻƴ ΨǎŜƭŜŎǘƛƻƴψŎǊƛǘŜǊƛŀ ϑŀŎǘƛƻƴϒΩ ŦƛƭŜόǎύ

awk ςCέμέ ςf empawk.awk empn.lst

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 10

before processing the first line, for example, a heading, then the BEGIN section can be used

gainfully. Similarly, the end section useful in printing some totals after processing is over.

The BEGIN and END sections are optional and take the form

BEGIN {action}

END {action}

These two sections, when present, are delimited by the body of the awk program. You

can use them to print a suitable heading at the beginning and the average salary at the end.

BUILT -IN VARIABLES

Awk has several built-in variables. They are all assigned automatically, though it is

also possible for a user to reassign some of them. You have already used NR, which signifies

the record number of the current line. Weôll now have a brief look at some of the other

variable.

The FS Variable: as stated elsewhere, awk uses a contiguous string of spaces as the default

field delimiter. FS redefines this field separator, which in the sample database happens to be

the |. When used at all, it must occur in the BEGIN section so that the body of the program

knows its value before it starts processing:

BEGIN {FS=ò|ò}

This is an alternative to the ïF option which does the same thing.

The OFS Variable: when you used the print statement with comma-separated arguments,

each argument was separated from the other by a space. This is awkôs default output field

separator, and can reassigned using the variable OFS in the BEGIN section:

BEGIN { OFS=ò~ò }

When you reassign this variable with a ~ (tilde), awk will use this character for delimiting the

print arguments. This is a useful variable for creating lines with delimited fields.

The NF variable: NF comes in quite handy for cleaning up a database of lines that donôt

contain the right number of fields. By using it on a file, say emp.lst, you can locate those lines

not having 6 fields, and which have crept in due to faulty data entry:

$awk óBEGIN {FS = ñ|ò}

NF! =6 {

Print ñRecord No ñ, NR, ñhasò, ñfieldsò}ô empx.lst

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 11

Part-A

Experiment No: 1 Date:

FOUR NODE POINT TO POINT NETWORK

Aim: Simulate a four node point to point network with duplex links between them. Set queue

size and vary the bandwidth and find number of packets dropped.

set ns [new Simulator] # Letter S is capital

set nf [open PA1.nam w] # open a nam trace file in write mode

$ns namtrace-all $nf # nf nam filename

set tf [open PA1.tr w] # tf trace filename

$ns trace-all $tf

proc finish { } {

global ns nf tf

$ns flush-trace # clears trace file contents

close $nf

close $tf

exec nam PA1.nam &

exit 0

}

set n0 [$ns node] # creating 4 nodes

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

$ns duplex-link $n0 $n2 200Mb 10ms DropTail # establishing links

$ns duplex-link $n1 $n2 200Mb 10ms DropTail

$ns duplex-link $n2 $n3 200Mb 10ms DropTail

$ns queue-limit $n0 $n2 10

$ns queue-limit $n1 $n2 10

$ns queue-limit $n2 $n3 10

set udp0 [new Agent/UDP] # attaching transport layer protocols

$ns attach-agent $n0 $udp0

set cbr0 [new Application/Traffic/CBR] # attaching application layer protocols

$cbr0 set packetSize 500

$cbr0 set interval 0.005

$cbr0 attach-agent $udp0

set null0 [new Agent/Null] # creating sink(destination) node

$ns attach-agent $n3 $null0

$ns connect $udp0 $null0

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 12

$ns at 0.1 "$cbr0 start"

$ns at 1.0 "finish"

$ns run

AWK file :(Open a new editor using ñvi commandò and write awk file and save with ñ.awkò

extension)

#immediately after BEGIN should open braces ó{ó

BEGIN{c=0;}

{

if($1= ="d")

 { c++;

printf("%s \t%s\n",$5,$11);

 }

 }

END{printf("The number of packets dropped =%d \n",c);}

Steps for execution

ü Open vi editor and type program. Program name should have the extension ñ
.tcl ò

[root@localhost ~]# vi lab1.tcl

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Open vi editor and type awk program. Program name should have the

extension ñ.awk ò

[root@localhost ~]# vi lab1.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab1.tcl

ü Here ñnsò indicates network simulator. We get the topology shown in the

snapshot.

ü Now press the play button in the simulation window and the simulation will

begins.

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab1.awk lab1.tr

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab1.tr

Trace file contains 12 columns:

Event type, Event time, From Node, To Node, Packet Type, Packet Size, Flags

(indicated by --------), Flow ID, Source address, Destination address, Sequence ID,

Packet ID.
Contents of Trace File Topology Output

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 13

Experiment No: 2 Date:

FOUR NODE POINT TO POINT NETWORK WITH TCP and UDP

Aim: Simulate a four node point to point network with the links connected as follows: n0 ï

n2, n1 ï n2 and n2 ï n3. Apply TCP agent between n0 ï n3 and UDP agent between n1 ï n3.

Apply relevant applications over TCP and UDP agents changing the parameter and

determine the number of packets sent by TCP / UDP.

set ns [new Simulator]

set nf [open lab2.nam w]

$ns namtrace-all $nf

set tf [open lab2.tr w]

$ns trace-all $tf

proc finish { } {

global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam lab2.nam &

exit 0

}

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

$ns duplex-link $n0 $n2 10Mb 1ms DropTail

$ns duplex-link $n1 $n2 10Mb 1ms DropTail

$ns duplex-link $n2 $n3 10Mb 1ms DropTail

set tcp0 [new Agent/TCP] # letters A,T,C,P are capital

$ns attach-agent $n0 $tcp0

set udp1 [new Agent/UDP] # letters A,U,D,P are capital

$ns attach-agent $n1 $udp1

set null0 [new Agent/Null] # letters A and N are capital

$ns attach-agent $n3 $null0

set sink0 [new Agent/TCPSink] # letters A,T,C,P,S are capital

$ns attach-agent $n3 $sink0

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 14

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

$ns connect $tcp0 $sink0

$ns connect $udp1 $null0

$ns at 0.1 "$cbr1 start"

$ns at 0.2 "$ftp0 start"

$ns at 0.5 "finish"

$ns run

AWK file :(Open a new editor using ñvi commandò and write awk file and save with ñ.awkò

extension)

BEGIN{

udp=0;

tcp=0;

}

{

if($1= = ñrò && $5 = = ñcbrò)

 {

udp++;

 }

else if($1 = = ñrò && $5 = = ñtcpò)

 {

tcp++;

 }

}

END{

printf(ñNumber of packets sent by TCP = %d\nò, tcp);

printf(ñNumber of packets sent by UDP=%d\nò, udp);

}

Steps for execution:

ü Open vi editor and type program. Program name should have the extension ñ .tcl ò

[root@localhost ~]# vi lab2.tcl

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Open vi editor and type awk program. Program name should have the extension

ñ.awk ò

[root@localhost ~]# vi lab2.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab2.tcl

o Here ñnsò indicates network simulator. We get the topology shown in the

snapshot.

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 15

o Now press the play button in the simulation window and the simulation will

begins.

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab2.awk lab2.tr

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab2.tr

 Topology Output

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 16

Experiment No: 3 Date:

ETHERNET LAN USING N -NODES

Aim: Simulate an Ethernet LAN using ónô nodes, change error rate and data rate and

compare throughput.

set ns [new Simulator]

set tf [open lab5.tr w]

$ns trace-all $tf

set nf [open lab5.nam w]

$ns namtrace-all $nf

$ns color 0 blue

set n0 [$ns node]

$n0 color "red"

set n1 [$ns node]

$n1 color "red"

set n2 [$ns node]

$n2 color "red"

set n3 [$ns node]

$n3 color "red"

set n4 [$ns node]

$n4 color "magenta"

set n5 [$ns node]

$n5 color "magenta"

set n6 [$ns node]

$n6 color "magenta"

set n7 [$ns node]

$n7 color "magenta"

$ns make-lan "$n0 $n1 $n2 $n3" 100Mb 300ms LL Queue/ DropTail Mac/802_3

$ns make-lan "$n4 $n5 $n6 $n7" 100Mb 300ms LL Queue/ DropTail Mac/802_3

$ns duplex-link $n3 $n4 100Mb 300ms DropTail

$ns duplex-link -op $n3 $n4 color "green"

set error rate. Here ErrorModel is a class and it is single word and space should not

be given between Error and Model

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 17

lossmodel is a command and it is single word. Space should not be given between loss

and model

set err [new ErrorModel]

$ns lossmodel $err $n3 $n4

$err set rate_ 0.1

error rate should be changed for each output like 0.1,0.3,0.5é. */

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set fid_ 0

$cbr set packetSize_ 1000

$cbr set interval_ 0.0001

set null [new Agent/Null]

$ns attach-agent $n7 $null

$ns connect $udp $null

proc finish { } {

global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam lab5.nam &

exit 0

}

$ns at 0.1 "$cbr start"

$ns at 3.0 "finish"

$ns run

AWK file :(Open a new editor using ñvi commandò and write awk file and save with ñ.awkò

extension)

BEGIN{

pkt=0;

time=0;

}

{

if($1= ="r" && $3= ="9" && $4= ="7"){

pkt = pkt + $6;

time =$2;

}

}

END {

printf("throughput:%fMbps",((pkt / time) * (8 / 1000000)));

}

Steps for execution

ü Open vi editor and type program. Program name should have the extension ñ .tcl ò

[root@localhost ~]# vi lab3.tcl

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 18

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Open vi editor and type awk program. Program name should have the extension

ñ.awk ò

[root@localhost ~]# vi lab3.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab3.tcl

o Here ñnsò indicates network simulator. We get the topology shown in the

snapshot.

o Now press the play button in the simulation window and the simulation will

begins.

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab3.awk lab3.tr

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab3.tr

Here ñhò indicates host.

Topology Output

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 19

This above output is for error rate 0.1. During next execution of simulation change error rate

to 0.3, 0.5,é..and check its effect on throughput.

Experiment No: 4 Date:

ETHERNET LAN US ING N-NODES WITH MULTIPLE TRAFFIC

Aim: Simulate an Ethernet LAN using ónô nodes and set multiple traffic nodes and plot

congestion window for different source / destination

set ns [new Simulator]

set tf [open pgm7.tr w]

$ns trace-all $tf

set nf [open pgm7.nam w]

$ns namtrace-all $nf

set n0 [$ns node]

$n0 color "magenta"

$n0 label "src1"

set n1 [$ns node]

set n2 [$ns node]

$n2 color "magenta"

$n2 label "src2"

set n3 [$ns node]

$n3 color "blue"

$n3 label "dest2"

set n4 [$ns node]

set n5 [$ns node]

$n5 color "blue"

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 20

$n5 label "dest1"

$ns make-lan "$n0 $n1 $n2 $n3 $n4" 100Mb 100ms LL Queue/ DropTail Mac/802_3 #

should come in single line

$ns duplex-link $n4 $n5 1Mb 1ms DropTail

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set packetSize_ 500

$ftp0 set interval_ 0.0001

set sink5 [new Agent/TCPSink]

$ns attach-agent $n5 $sink5

$ns connect $tcp0 $sink5

set tcp2 [new Agent/TCP]

$ns attach-agent $n2 $tcp2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp2

$ftp2 set packetSize_ 600

$ftp2 set interval_ 0.001

set sink3 [new Agent/TCPSink]

$ns attach-agent $n3 $sink3

$ns connect $tcp2 $sink3

set file1 [open file1.tr w]

$tcp0 attach $file1

set file2 [open file2.tr w]

$tcp2 attach $file2

$tcp0 trace cwnd_ # must put underscore (_) after cwnd and no space between them

$tcp2 trace cwnd_

proc finish { } {

global ns nf tf

$ns flush-trace

close $tf

close $nf

exec nam pgm7.nam &

exit 0

}

$ns at 0.1 "$ftp0 start"

$ns at 5 "$ftp0 stop"

$ns at 7 "$ftp0 start"

$ns at 0.2 "$ftp2 start"

$ns at 8 "$ftp2 stop"

$ns at 14 "$ftp0 stop"

$ns at 10 "$ftp2 start"

$ns at 15 "$ftp2 stop"

$ns at 16 "finish"

$ns run

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 21

AWK file : (Open a new editor using ñvi commandò and write awk file and save with ñ.awkò

extension)

cwnd:- means congestion window

BEGIN {

}

{

if($6= ="cwnd_") # donôt leave space after writing cwnd_

printf("%f \t%f \t\n",$1,$7); # you must put \n in printf

}

END {

}

Steps for execution

ü Open vi editor and type program. Program name should have the extension ñ .tcl ò

[root@localhost ~]# vi lab4.tcl

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Open vi editor and type awk program. Program name should have the extension

ñ.awk ò

[root@localhost ~]# vi lab4.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab4.tcl

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab4.awk file1.tr >a1

[root@localhost~]# awk ïf lab4.awk file2.tr >a2

[root@localhost~]# xgraph a1 a2

ü Here we are using the congestion window trace files i.e. file1.tr and file2.tr and we

are redirecting the contents of those files to new files say a1 and a2 using output

redirection operator (>).

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab4.tr

Topology:

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 22

Output:

Experiment No: 5 Date:

SIMPLE ESS WITH WIRELESS LAN

Aim: Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and

determine the performance with respect to transmission of packets.

set ns [new Simulator]

set tf [open lab8.tr w]

$ns trace-all $tf

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 23

set topo [new Topography]

$topo load_flatgrid 1000 1000

set nf [open lab8.nam w]

$ns namtrace-all-wireless $nf 1000 1000

$ns node-config -adhocRouting DSDV \

 -llType LL \

 -macType Mac/802_11 \

 -ifqType Queue/DropTail \

 -ifqLen 50 \

 -phyType Phy/WirelessPhy \

 -channelType Channel/WirelessChannel \

 -prrootype Propagation/TwoRayGround \

 -antType Antenna/OmniAntenna \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON

create-god 3

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

$n0 label "tcp0"

$n1 label "sink1/tcp1"

$n2 label "sink2"

$n0 set X_ 50

$n0 set Y_ 50

$n0 set Z_ 0

$n1 set X_ 100

$n1 set Y_ 100

$n1 set Z_ 0

$n2 set X_ 600

$n2 set Y_ 600

$n2 set Z_ 0

$ns at 0.1 "$n0 setdest 50 50 15"

$ns at 0.1 "$n1 setdest 100 100 25"

$ns at 0.1 "$n2 setdest 600 600 25"

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

set sink1 [new Agent/TCPSink]

$ns attach-agent $n1 $sink1

$ns connect $tcp0 $sink1

set tcp1 [new Agent/TCP]

$ns attach-agent $n1 $tcp1

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

set sink2 [new Agent/TCPSink]

$ns attach-agent $n2 $sink2

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 24

$ns connect $tcp1 $sink2

$ns at 5 "$ftp0 start"

$ns at 5 "$ftp1 start"

$ns at 100 "$n1 setdest 550 550 15"

$ns at 190 "$n1 setdest 70 70 15"

proc finish { } {

 global ns nf tf

 $ns flush-trace

 exec nam lab8.nam &

 close $tf

 exit 0

}

$ns at 250 "finish"

$ns run

AWK file : (Open a new editor using ñvi commandò and write awk file and save with ñ.awkò

extension)

BEGIN{

 count1=0

 count2=0

 pack1=0

 pack2=0

 time1=0

 time2=0

}

{

 if($1= ="r"&& $3= ="_1_" && $4= ="AGT")

 {

 count1++

 pack1=pack1+$8

 time1=$2

 }

 if($1= ="r" && $3= ="_2_" && $4= ="AGT")

 {

 count2++

 pack2=pack2+$8

 time2=$2

 }

}

END{

printf("The Throughput from n0 to n1: %f Mbps \nò, ((count1*pack1*8)/(time1*1000000)));

printf("The Throughput from n1 to n2: %f Mbps", ((count2*pack2*8)/(time2*1000000)));

}

Steps for execution

ü Open vi editor and type program. Program name should have the extension ñ .tcl ò

[root@localhost ~]# vi lab5.tcl

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 25

ü Open vi editor and type awk program. Program name should have the extension

ñ.awk ò

[root@localhost ~]# vi lab5.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab5.tcl

o Here ñnsò indicates network simulator. We get the topology shown in the

snapshot.

o Now press the play button in the simulation window and the simulation will

begins.

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab5.awk lab5.tr

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab5.tr

Output:

Node 1 and 2 are communicating Node 2 is moving towards node 3

Node 2 is coming back from node 3 towards node1 Trace File

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 26

Here ñMò indicates mobile nodes, ñAGTò indicates Agent Trace, ñRTRò indicates

Route Trace

Experiment No: 6 Date:

LINK STATE ROUTING ALGORITHM

Aim: Implementation of Link State Routing algorithm for a given graph.

set val(stop) 10.0 # time of simulation end

#Create a ns simulator

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 27

set ns [new Simulator]

#Open the NS trace file

set tracefile [open prg6.tr w]

$ns trace-all $tracefile

#Open the NAM trace file

set namfile [open prg6.nam w]

$ns namtrace-all $namfile

#Create 5 nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

#Create links between nodes

$ns duplex-link $n0 $n1 100.0Mb 10ms DropTail

$ns queue-limit $n0 $n1 50

$ns duplex-link $n0 $n2 100.0Mb 10ms DropTail

$ns queue-limit $n0 $n2 50

$ns duplex-link $n2 $n3 100.0Mb 10ms DropTail

$ns queue-limit $n2 $n3 50

$ns duplex-link $n1 $n3 100.0Mb 10ms DropTail

$ns queue-limit $n1 $n3 50

$ns duplex-link $n3 $n4 100.0Mb 10ms DropTail

$ns queue-limit $n3 $n4 50

$ns duplex-link $n0 $n3 100.0Mb 10ms DropTail

$ns queue-limit $n0 $n3 50

$ns duplex-link $n1 $n2 100.0Mb 10ms DropTail

$ns queue-limit $n1 $n2 50

#Give node position (for NAM)

$ns duplex-link -op $n0 $n1 orient right

$ns duplex-link -op $n0 $n2 orient right-down

$ns duplex-link -op $n2 $n3 orient right

$ns duplex-link -op $n1 $n3 orient left-down

$ns duplex-link -op $n3 $n4 orient left-down

$ns duplex-link -op $n0 $n3 orient right-down

$ns duplex-link -op $n1 $n2 orient left-down

#Set the link costs. All link costs are symmetric

$ns cost $n0 $n1 2

$ns cost $n0 $n2 1

$ns cost $n0 $n3 3

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 28

$ns cost $n1 $n0 2

$ns cost $n1 $n2 2

$ns cost $n1 $n3 3

$ns cost $n2 $n1 2

$ns cost $n2 $n0 1

$ns cost $n2 $n3 1

$ns cost $n3 $n2 1

$ns cost $n3 $n1 3

$ns cost $n3 $n0 3

$ns cost $n3 $n4 2

$ns cost $n4 $n3 2

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

set null1 [new Agent/Null]

$ns attach-agent $n4 $null1

$ns connect $udp0 $null1

$udp0 set packetSize 1500

#Setup a CBR Application over UDP connection

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packetSize 1000

$cbr0 set rate 1.0Mb

$cbr0 set random_ null

$ns at 1.0 "$cbr0 start"

$ns at 5.0 "$cbr0 stop"

$ns rtproto LS

#Define a 'finish' procedure

proc finish {} {

 global ns tracefile namfile

 $ns flush-trace

 close $tracefile

 close $namfile

 exec nam prg6.nam &

 exit 0

}

$ns at 12 "$val(stop)"

$ns at 11 "finish"

$ns at 10 "$ns halt"

$ns run

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 29

AWK file

BEGIN{

 tcppack=0

 tcppack1=0

 }

{

 if($1=="r"&&$4=="4"&&$5== "cbr"&&$6=="1000")

 {

 tcppack++;

 }

}

END{

printf(" \n total number of data packets at Node 4 due to Link state algorithm: %d \n",

tcppack++);

 }

Steps for execution

ü Open vi editor and type program. Program name should have the extension ñ .tcl ò

[root@localhost ~]# vi lab6.tcl

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Open vi editor and type awk program. Program name should have the extension

ñ.awk ò

[root@localhost ~]# vi lab6.awk

ü Save the program by pressing ñESC keyò first, followed by ñShift and :ò keys

simultaneously and type ñwqò and press Enter key.

ü Run the simulation program

[root@localhost~]# ns lab6.tcl

o Here ñnsò indicates network simulator. We get the topology shown in the

snapshot.

o Now press the play button in the simulation window and the simulation will

begins.

ü After simulation is completed run awk file to see the output ,

[root@localhost~]# awk ïf lab6.awk lab6.tr

ü To see the trace file contents open the file as ,

[root@localhost~]# vi lab6.tr

 Topology

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 30

OUTPUT

ÅTotal number of routing paths.

1. N0-N1-N2-N3-N4 : Total Cost is 7

2. N0-N2-N1-N3-N4 : Total Cost is 8

3. N0-N2-N3-N4 : Total Cost is 4

4. N0-N3-N4 : Total Cost is 5

Å Shortest according to Link State Algorithm is N0-N2-N3-N4 having Total Cost is of 4

Part-B

Experiment No: 1 Date:

BIT STUFFING

AIM: Write a C/C++ program for bit stuffing and de-stuffing in HDLC frame format.

THEORY:

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 31

The new technique allows data frames to contain an arbitrary number if bits and allows

character codes with an arbitrary no of bits per character. Each frame begins and ends with

special bit pattern, 01111110, called a flag byte. Whenever the senderôs data link layer

encounters five consecutive ones in the data, it automatically stuffs a 0 bit into the outgoing

bit stream.

 ALGORITHM for BIT STUFFING :

Step1: Input data sequence

Step 2: Add start of frame to output sequence

Step 3: For every bit in input

a. Append bit to output sequence

b. Is bit a 1?

Yes: Increment count,

 If count is 5, append 0 to output sequence and reset count.

No: Set count to 0

Step 4: Add stop of frame bits to output sequence.

ALGORITHM for BIT DESTUFFING :

 Step 1: Input the stuffed sequence.

 Step 2: Remove start of frame from sequence.

 Step 3: For every bit in input,

a. Append bit to output sequence.

b. Is bit a 1?

 Yes: Increment count. If count is 5, remove next bit (which is 0) & reset count.

 No: Set count to 0.

 Step 4: Remove end of frame from bits from sequence.

 C- LANGUAGE PROGRAM CODE

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main() { char ch,array[50]={"01111110"},recd_array[50];

int counter=0,i=8,j,k;

// clrscr();

printf("Ente r the original data stream for bit stuffing: \n");

while((ch=getche())!='\r')

{ if(ch=='1')

 ++counter;

 else

 counter=0; array[i++]=ch;

 if(counter==5)

 {

 array[i++]='0';

 counter=0;

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 32

 }

}

 strcat(array,"01111110");

 printf (" \n The stuffed data stream is:\n");

for(j=0;j<i+8;++j)

printf("%c",array[j]);

counter=0;

printf(" \n The destuffed data stream is:\n");

for(j=8,k=0;j<i+8;++j)

 {

 if(array[j]=='1')

 ++counter;

 else

 counter=0;

 recd_array[k++]=arra y[j];

 if(counter==6)

 break;

 else if(counter==5 && array[j+1]=='0')

 {

 ++j;

 counter=0;

 }

 }

for(j=0;j<=k -strlen("01111110");++j)

printf("%c",recd_array[j]);

getch();

}

OUTPUT:

Enter the original data stream for bit stuffing:

0011011111000011110

The stuffed data stream is:

011111100011011111000001111001111110

The destuffed data stream is:

0011011111000011110

Experiment No: 2 Date:

CHARACTER STUFFING

AIM: Implement the data link layer framing using character-stuffing for a given binary

 data.

THEORY:

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 33

The framing method gets around the problem of resynchronization after an error by having

each frame start with the ASCII character sequence DLE STX and the sequence DLE ETX. If

the destination ever losses the track of the frame boundaries all it has to do is look for DLE

STX or DLE ETX characters to figure out. The data link layer on the receiving end removes

the DLE before the data are given to the network layer. This technique is called character

stuffing.

ALGORITHM:

Step 1: Start

Step 2 Read the character string to be transmitted in upper case.

Step 3: For stuffing process, append at begin with óDLE STXô as starting flag byte and

end with óDLE ETXô as ending flag byte of the string.

Step 4: Check the string whether it has óDLEô, óSTXô, and óETXô.

Step 5: If yes then insert the string óDLEô before the character else transmit the next

character.

Step 6: Continue this process until the completion of string.

Step 7: Stuffed data is obtained.

Step 8: Now destuffing process, remove the appended string at start and end of string.

Step 9: Continue this process until the last character of string.

Step 10: If yes then remove the string óDLEô that is encountered first else transmit the

data.

Step 11: Continue this process until the last character of string.

Step 12: Original data has been obtained.

Step 13 Stop.

C- LANGUAGE PROGRAM CODE

 #include<stdio.h>

 #include<conio.h>

 #include<string.h>

 main()

 {

 char a[30],b[30],c[30];

 int i,j,n,m;

 // clrscr();

 printf(" Enter the string in upper case: \n");

 scanf("%s",a);

 n=strlen(a);

 b[0]='D';

 b[1]='L';

 b[2]='E';

 b[3]=' ';

 b[4]='S';

 b[5]='T';

 b[6]='X';

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 34

 b[7]=' ';

 j=8;i=0;

 while(i<n)

 {

 if((a[i]=='D'&&a[i+1]=='L'&&a[i+2]=='E') || (a[i]=='S'&&a[i+1]=='T'&&a[i+2]==

 'X') || (a[i]=='E'&&a[i+1]=='T'&&a[i+2]=='X'))

 {

 b[j]='D';

 b[j+1]='L';

 b[j+2]='E';

 j=j+3;

 }

 b[j]=a[i];

 i++;

 j++;

 }

 b[j]=' ';

 b[j+1]='D';

 b[j+2]='L';

 b[j+3]='E';

 b[j+4]=' ';

 b[j+5]='E';

 b[j+6]='T';

 b[j+7]='X';

 b[j+8]='\0';

 printf("Frames after stuffing:\n");

 printf("%s",b);

 m=strlen(b);

 printf("\nFrames after destuffing:\n");

 i=0,j=0;

 while(i<8)

 i++;

 while(i<m-8)

 {

if((b[i]=='D'&&b [i+1]=='L'&&b[i+2]=='E')||(b[i]=='S'&&b[i+1]=='T'&&b[i+2]=

 óX')||(b[i]=='E'&&b[i+1]=='T'&&b[i+2]=='X'))

 {

 i=i+3;

 c[j]=b[i];

 }

 else

 c[j]=b[i];

 j++;

 i++;

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 35

 }

 c[j]='\0';

 printf("%s",c);

 getch();

 }

INPUT: Enter the string in upper case:

 ETXWITHSTXCANDLE

OUTPUT:

Frames after stuffing:

DLE STX DLEETXWITHDLESTXCANDLEDLE DLE ETX

 Frames after destuffing:

ETXWITHSTXCANDLE

Experiment No: 3 Date:

DISTANCE VECTOR ALGORITHM

Aim: C Program for Distance Vector Algorithm to fi nd suitable path for transmission

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 36

Distance Vector Algorithm is a decentralized routing algorithm that requires that each

router simply inform its neighbors of its routing table. For each network path, the receiving

routers pick the neighbor advertising the lowest cost, then add this entry into its routing table

for re-advertisement. To find the shortest path, Distance Vector Algorithm is based on one of

two basic algorithms: the Bellman-Ford and the Dijkstra algorithms.

Routers that use this algorithm have to maintain the distance tables (which is a one-

dimension array -- "a vector"), which tell the distances and shortest path to sending packets to

each node in the network. The information in the distance table is always upd by exchanging

information with the neighboring nodes. The number of data in the table equals to that of all

nodes in networks (excluded itself). The columns of table represent the directly attached

neighbors whereas the rows represent all destinations in the network. Each data contains the

path for sending packets to each destination in the network and distance/or time to transmit

on that path (we call this as "cost"). The measurements in this algorithm are the number of

hops, latency, the number of outgoing packets, etc.

The starting assumption for distance-vector routing is each node knows the cost of the

link of each of its directly connected neighbors. Next, every node sends a configured message

to its directly connected neighbors containing its own distance table. Now, every node can

learn and up its distance table with cost and next hops for all nodes network. Repeat

exchanging until no more information between the neighbors.

Consider a node A that is interested in routing to destination H via a directly attached

neighbor J. Node A's distance table entry, Dx(Y,Z) is the sum of the cost of the direct-one

hop link between A and J, c(A,J), plus neighboring J's currently known minimum-cost path

(shortest path) from itself(J) to H. That is Dx(H,J) = c(A,J) + minw{Dj(H,w)} The minw is

taken over all the J's. This equation suggests that the form of neighbor-to-neighbor

communication that will take place in the DV algorithm - each node must know the cost of

each of its neighbors' minimum-cost path to each destination. Hence, whenever a node

computes a new minimum cost to some destination, it must inform its neighbors of this new

minimum cost.

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 37

Figure (a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

Implementation Algorithm:

1. send my routing table to all my neighbors whenever my link table changes

2. when I get a routing table from a neighbor on port P with link metric M:

a. add L to each of the neighbor's metrics

b. for each entry (D, P', M') in the updated neighbor's table:

i. if I do not have an entry for D, add (D, P, M') to my routing table

ii. if I have an entry for D with metric M", add (D, P, M') to my routing

table if M' < M"

3. if my routing table has changed, send all the new entries to all my neighbors.

C- LANGUAGE PROGRAM CODE

#include<stdio.h>

#include<stdlib.h>

void rout_table();

int d[10][10],via[10][10];

int i,j,k,l,m,n,g[10][10],temp[10][10],ch,cost;

int main()

{

 system("clear");

 printf("enter the value of no. of nodes\n");

 scanf("%d",&n);

 rout_table();

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 38

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 temp[i][j]=g[i][j];

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 via[i][j]=i;

 while(1)

 {

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 if(d[i][j])

 for(k=0;k<n;k++)

 if(g[i][j]+g[j][k]<g[i][k])

 {

 g[i][k]=g[i][j]+g[j][k];

 via[i][k]=j;

 }

 for(i=0;i<n;i++)

 {

 printf("table for router %c\n" ,i+97);

 for(j=0;j<n;j++)

 printf("%c:: %d via %c\n" ,j+97, g[i][j],via[i][j]+97);

 }

Break;

}

}

}

void rout_table()

{

printf("\nEnter the routing table : \n");

 printf("\t|");

 for(i=1;i<=n;i++)

 printf("%c\t",i+96);

 printf("\n");

 for(i=0;i<=n;i++)

 printf("-------");

 printf("\n");

 for(i=0;i<n;i++)

 {

 printf("%c |",i+97);

 for(j=0;j<n;j++)

{

 scanf("%d",&g[i][j]);

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 39

 if(g[i][j]!=999)

 d[i][j]=1;

 }

 }

}

OUTPUT:

enter the value of no. of nodes

4

Enter the routing table:

 |a b c d

a |0 5 1 4

b |5 0 6 2

c |1 6 0 3

d |4 2 3 0

table for router a

a:: 0 via a

b:: 5 via a

c:: 1 via a

d:: 4 via a

table for router b

a:: 5 via b

b:: 0 via b

c:: 5 via d

d:: 2 via b

table for router c

a:: 1 via c

b:: 5 via d

c:: 0 via c

d:: 3 via c

table for router d

a:: 4 via d

b:: 2 via d

c:: 3 via d

d:: 0 via d

do you want to change the cost(1/0)

1

enter the vertices which you want to change the cost

1 3

enter the cost

2

table for router a

a:: 0 via a

b:: 5 via a

c:: 2 via a

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 40

d:: 4 via a

table for router b

a:: 5 via b

b:: 0 via b

c:: 5 via d

d:: 2 via b

table for router c

a:: 2 via c

b:: 5 via d

c:: 0 via c

d:: 3 via c

table for router d

a:: 4 via d

b:: 2 via b

c:: 3 via d

d:: 0 via d

do you want to change the cost(1/0)

0

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 41

Experiment No: 4 Date:

SHORTEST PATH USING DIJKSTRA ALGORITHM

AIM: Write a C/C++ program to find the Shortest path algorithm using Dijkstraôs algorithm.

THEORY:

Dijkstraôs algorithm progressively identifies the closest no Dijkstraôs algorithm progressively

identifies the closest nodes from the source node in order of increasing path cost. The

algorithm is iterative. The Dijkstraôs algorithm calculates the shortest path between two

points on a network using a graph made up of nodes and edges The algorithm divides the

nodes into two sets : tentative and permanent . It chooses nodes, makes them tentative,

examines them and if they pass the criteria makes them permanent.

ALGORITHM:

Step1: Declare array path [5] [5], min, a [5][5], index, t[5];

Step2: Declare and initialize st=1,ed=5

Step 3: Declare variables i, j, stp, p, edp

Step 4: print ñenter the cost ñ

Step 5: i=1

Step 6: Repeat step (7 to 11) until (i<=5)

Step 7: j=1

Step 8: repeat step (9 to 10) until (j<=5)

Step 9: Read a[i] [j]

Step 10: increment j

Step 11: increment i

Step 12: print ñEnter the pathò

Step 13: read p

Step 14: print ñEnter possible pathsò

Step 15: i=1

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 42

Step 16: repeat steps (17 to 21) until (i<=p)

Step 17: j=1

Step 18: repeat steps (19 to 20) until (i<=5)

Step 19: read path[i][j]

Step 20: increment j

Step 21: increment i

Step 22: j=1

Step 23: repeat step(24 to 34) until(i<=p)

Step 24: t[i]=0

Step 25: stp=st

Step 26: j=1

Step 27: repeat step(26 to 34) until(j<=5)

Step 28: edp=path[i][j+1]

Step 29: t[i]= [ti]+a[stp][edp]

Step 30: if (edp==ed) then

Step 31: break;

Step 32: else

Step 33: stp=edp

Step 34: end if

Step 35: min=t[st]

Step 36: index=st

Step 37: repeat steps (38 to 41) until (i<=p)

Step 38: min>t[i]

Step 39: min=t[i]

Step 40: index=i

Step 41: end if

Step 42: printò minimum costò min

Step 43: printò minimum cost pthò

Step 44: repeat steps (45 to 48) until (i<=5)

Step 45: print path[index][i]

Step 46: if(path[idex][i]==ed) then

Step 47: break

Step 48: end if

End

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 43

C- LANGUAGE PROGRAM CODE

#include<stdio.h>

#include<conio.h>

void main()

{

 int path[5][5], i, j, min, a[5][5], p, st=1,ed=5,stp,edp,t[5],index;

 // clrscr();

 printf("enter the cost matrix\n");

 for(i=1;i<=5;i++)

 for(j=1;j<=5;j++)

 scanf("%d",&a[i][j]);

 printf("enter the paths\n");

 scanf("%d",&p);

 printf("enter possible paths\n");

 for(i=1;i<=p;i++)

 for(j=1;j<=5;j++)

 scanf("%d",&path[i][j]);

 for(i=1;i<=p;i++)

 {

 t[i]=0;

 stp=st;

 for(j=1;j<=5;j++)

 {

 edp=path[i][j+1];

 t[i]=t[i]+a[stp][edp];

 if(edp==ed)

 break;

 else

 stp=edp;

 }

 }

 min=t[st];index=st;

 for(i=1;i<=p;i++)

 {

 if(min>t[i])

 {

 min=t[i];

 index=i;

 }

 }

 printf("minimum cost %d",min);

 printf("\n minimum cost path ");

 for(i=1;i<=5;i++)

 {

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 44

 printf("--> %d",path[index][i]);

 if(path[index][i]==ed)

 break;

 }

 getch();

}

 OUTPUT:

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 45

Experiment No: 5 Date:

ERROR DETECTING CODE Using CRC-CCITT (16-bit)

AIM : C Program for ERROR detecting code using CRC-CCITT (16bit).

THEORY :

Whenever digital data is stored or interfaced, data corruption might occur. Since the

beginning of computer science, developers have been thinking of ways to deal with this type

of problem. For serial data they came up with the solution to attach a parity bit to each sent

byte. This simple detection mechanism works if an odd number of bits in a byte changes, but

an even number of false bits in one byte will not be detected by the parity check. To

overcome this problem developers have searched for mathematical sound mechanisms to

detect multiple false bits. The CRC calculation or cyclic redundancy check was the result of

this. Nowadays CRC calculations are used in all types of communications. All packets sent

over a network connection are checked with a CRC. Also each data block on your hard disk

has a CRC value attached to it. Modern computer world cannot do without these CRC

calculations. So let's see why they are so widely used. The answer is simple; they are

powerful, detect many types of errors and are extremely fast to calculate especially when

dedicated hardware chips are used.

The idea behind CRC calculation is to look at the data as one large binary number.

This number is divided by a certain value and the remainder of the calculation is called the

CRC. Dividing in the CRC calculation at first looks to cost a lot of computing power, but it

can be performed very quickly if we use a method similar to the one learned at school. We

will as an example calculate the remainder for the character 'm'ðwhich is 1101101 in binary

notationðby dividing it by 19 or 10011. Please note that 19 is an odd number. This is

necessary as we will see further on. Please refer to your schoolbooks as the binary calculation

method here is not very different from the decimal method you learned when you were

young. It might only look a little bit strange. Also notations differ between countries, but the

method is similar.

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 46

With decimal calculations you can quickly check that 109 divided by 19 gives a

quotient of 5 with 14 as the remainder. But what we also see in the scheme is that every bit

extra to check only costs one binary comparison and in 50% of the cases one binary

subtraction. You can easily increase the number of bits of the test data stringðfor example to

56 bits if we use our example value "Lammert"ðand the result can be calculated with 56

binary comparisons and an average of 28 binary subtractions. This can be implemented in

hardware directly with only very few transistors involved. Also software algorithms can be

very efficient.

All of the CRC formulas you will encounter are simply checksum algorithms based

on modulo-2 binary division where we ignore carry bits and in effect the subtraction will be

equal to an exclusive or operation. Though some differences exist in the specifics across

different CRC formulas, the basic mathematical process is always the same:

¶ The message bits are appended with c zero bits; this augmented message is the

dividend

¶ A predetermined c+1-bit binary sequence, called the generator polynomial, is the

divisor

¶ The checksum is the c-bit remainder that results from the division operation

Table 1 lists some of the most commonly used generator polynomials for 16- and 32-bit

CRCs. Remember that the width of the divisor is always one bit wider than the remainder.

So, for example, youôd use a 17-bit generator polynomial whenever a 16-bit checksum is

required.

 CRC-CCITT CRC-16 CRC-32

Checksum

Width
16 bits 16 bits 32 bits

Generator

Polynomial
10001000000100001 11000000000000101 100000100110000010001110110110111

Table 1. International Standard CRC Polynomials

Error detection with CRC

Consider a message represented by the polynomial M(x)

Consider a generating polynomial G(x)

This is used to generate a CRC = C(x) to be appended to M(x).

Note this G(x) is prime.

Steps: 1. Multiply M(x) by highest power in G(x). i.e. Add So much zeros to M(x).

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 47

2. Divide the result by G(x). The remainder = C(x).

Special case: This won't work if bitstring =all zeros. We don't allow such an

M(x).But M(x) bitstring = 1 will work, for example. Can divide 1101 into 1000.

3. If: x div y gives remainder c

that means: x = n y + c , Hence (x-c) = n y

(x-c) div y gives remainder 0

Here (x-c) = (x+c)

Hence (x+c) div y gives remainder 0

4. Transmit: T(x) = M(x) + C(x)

5. Receiver end: Receive T(x). Divide by G(x), should have remainder 0.

Note if G(x) has order n - highest power is x
n
,

then G(x) will cover (n+1) bits

and the remainder will cover n bits. i.e. Add n bits (Zeros) to message.

Some CRC polynomials that are actually used

Some CRC polynomials

¶ CRC-8:

x
8
+x

2
+x+1

o Used in: 802.16 (along with error correction).

¶ CRC-CCITT:

x
16

+x
12

+x
5
+1

o Used in: HDLC, SDLC, PPP default

¶ IBM-CRC-16 (ANSI):

x
16

+x
15

+x
2
+1

¶ 802.3:

x
32

+x
26

+x
23

+x
22

 +x
16

+x
12

+x
11

+x
10

 +x
8
+x

7
+x

5
+x

4
+x

2
+x+1

o Used in: Ethernet, PPP rootion

C- LANGUAGE PROGRAM CODE

#include<stdio.h>

int a[100],b[100],i,j,len,k,count=0;

//Generator Polynomial:g(x)=x^16+x^12+x^5+1

int gp[]={1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,};

int main()

{

 void div();

 system("clear");

 printf("\nEnter the length of Data Frame :");

 scanf("%d",&len);

 printf("\nEnter the Message :");

 for(i=0;i<len;i++)

 scanf("%d",&a[i]);

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 48

 //Append r(16) degree Zeros to Msg bits

 for(i=0;i<16;i++)

 a[len++]=0;

 //Xr.M(x) (ie. Msg+16 Zeros)

 for(i=0;i<len;i++)

 b[i]=a[i];

 //No of times to be divided ie.Msg Length

 k=len-16;

 div();

 for(i=0;i<len;i++)

 b[i]=b[i]^a[i]; //MOD 2 Substraction

 printf("\nData to be transmitted : ");

 for(i=0;i<len;i++)

 printf("%2d",b[i]);

 printf("\n\nEnter the Reveived Data : ");

 for(i=0;i<len;i++)

 scanf("%d",&a[i]);

 div();

 for(i=0;i<len;i++)

 if(a[i]!=0)

 {

 printf("\nERROR in Recived Data");

 return 0;

 }

 printf("\nData Recived is ERROR FREE");

}

void div()

{

 for(i=0;i<k;i++)

 {

 if(a[i]==gp[0])

 {

 for(j=i;j<17+i;j++)

 a[j]=a[j]^gp[count++];

 }

 count=0;

 }

}

Output:

Enter the length of Data Frame :4

Enter the Message :1 0 1 1

Data to be transmitted : 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1

Enter the Reveived Data : 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1

ERROR in Recived Data

Remender is : 0000000100000000

**

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 49

Experiment No: 6 Date:

STOP AND WAIT PROTOCOL

AIM : Implementation of Stop and Wait protocol using C.

THEORY :

 If data frames arrive at the receiver site faster than they can be processed, the frames

must be stored until their use. The protocol we discuss now is called the Stop-and-Wait

Protocol because the sender sends one frame, stops until it receives confirmation from the

receiver (okay to go ahead), and then sends the next frame.

 We still have unidirectional communication for data frames, but auxiliary ACK

frames (simple tokens of acknowledgment) travel from the other direction, so that we add

flow control.

C- LANGUAGE PROGRAM CODE

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

void main()

{

 int i,j,noframes,x,x1=10,x2;

 noframes=10;

 i=1; j=1;

 printf("number of frames is %d ",noframes);

 getch();

 while(noframes>0)

 {

 printf(" \nsending frames is %d",i);

 x=rand()%10;

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 50

 if(x%10==0)

 {

 for(x2=1;x2<2;x2++)

 {

 printf(" \n waiting for %d seconds\n",x2);

 sleep(x2);

 }

 printf(" \n sending frames %d\n",i);

 x=rand()%10;

 }

 printf(" \n ack for frame %d\n",j);

 noframes=noframes-1;

 i++;

 j++;

 }

 printf(" \n end of stop and wait protocol\n");

}

Output :

Computer Networks Laboratory 2017-18

Dept. of ECE, CIT, Gubbi Page no 51

Experiment No: 7 Date:

SLIDING WINDOW PROTPCOL

AIM: Implementation of Sliding Window Protocol using C.

THEORY :

It allows multiple frames to be in transmit as compared to stop and wait protocol. In

this the receiver has buffer of length W. Transmitter can send up to W frames without ACK.

Each frame is numbered according to modular arithmetic. ACK includes number of next

frame expected. Sequence number bounded by size of field (k).

