Computemetworks Laboratory

201718

PART-A
Introduction to NS-2:

1 Widely known as NS2, is simply an event driven simulation tool.

1 Useful in studying the dynamic nature of communication networks.

1 Simulation of wired as well as wireless network functions and protocols (e.g., routing

algorithms TCP, UDP) can be done using NS2.

1 In general, NS2 provides users with a way of specifying such network protocols and

simulating their corresponding behaviors.

Basic Architecture of NS2

Tcl Simulation Simulation
Simulation Objects Objects
Script

C++ OTcl

Simulation
Trace
File

—- NS2 Shell Executable Command (ns) |

Tcl scripting

| |
(Animation) | | (Plotting)

——] —

—
EOEREN
s

Y

S

-
-
-

&~ ___ A

Xgraph

A Tclis a general purpose scripting language. [Im&tgg]

Tcl runs on most of the platforms such as Unix, Windows, and Mac.

A
A The strength of Tcl is its simplicity.
A

It is not necessary to declare a data type for variable prior to the usage.

Basics of TCL
Syntax: command argl arg2 arg3
1 Hello World!
puts stdout{Hello, World!}
Hello, World!
1 Variables Command Substitution
setab set len [string length foobar]

set b $a set len [expr [string length foobar] + 9]

Dept. of EE, CIT, Gubbi

Page nd

Computemetworks Laboratory 201718

1 Simple Arithmetic
expr7.2/4
1 Procedures
proc Diag {a b} {
set ¢ [expr sqrt($a $a + $b * $b)]
return $c }
puts ADiagonal of a 3, 4 right triangle is

Output: Diagonal of a 3, 4 right triangle is 5.0

1 Loops
while{$i < $n} { for {set i 0} {$i < $n} {incr i} {
} }

Wired TCL Script Components

Create tle event scheduler

Open new files & turn on the tracing

Create the nodes

Setup the links

Configure the traffic type (e.g., TCP, UDP, etc)

Set the time of traffic generation (e.g., CBR, FTP)

Terminate the simulation
NS Simulator Preliminaries.

1. Initialization and termination aspects of the ns simulator.
Definition of network nodes, links, queues and topology.
Definition of agents and of applications.

The nam visualization tool.

a kw0

Tracing and random variables.

Initialization and Termination of TCL Script in NS -2

An ns simulation starts with the command

set ns [new Simulator]

Which is thus the first line in the tcl script? This line declares a new variable as using the set

command, you can call this variable as you wish, In general people declares it as ns because

Dept. of EE, CIT, Gubbi Page n@®

Computemetworks Laboratory 201718

it is an instancef the Simulator class, so an object the code[new Simulator] is indeed the
installation of the class Simulator using the reserved word new.
In order to have output files with data on the simulation (trace files) or files used for

visualization (namfiles) we need to create the files usin

#0Open the Trace file set tracefilel [open out.tr w]

$ns traceall $tracefilel

#0pen the NAM trace file

set namfile [open out.nam w]

$ns namtraceall $namfile

The above creates atda trace file called Aout.tr o a
cal | ed Athintthe tcleseniptihese files are not datl explicitly by their namedyut
instead by pointers that are decl ared above
Remark that thebeginwith a # symbolThe second | ine open the fi
writing, declared with the ledtr Aledhird line uses a simulator method called t@te
that have as parameter the name of the file where the traces will go.

The last line tells the simulator to record all simulation traces in NAM input fofmat.
also gives the file name thdtet trace will be written to later by the command $ns flnabe.

Inourcaset hi s wi | | be the file pioiaeattelde afti lbg fidie

The termination of the program i s done us
#Define a O6ufei ni shd proced
Proc finish {} {

global ns tracefilel namfile
$ns flushtrace

Close $tracefilel

Close $namfile

Exec nam out.nam &

Exit 0

}

Dept. of EE, CIT, Gubbi Page n@8

Computemetworks Laboratory 201718

The word proc declares a procedure in this case daflistt and without arguments.
The wordglobal is used to tell that we are using variables declared outside the procedure.
The si mul afiushit r @ evid Bdumg thditraces on theespective files. The tcl
¢ o mmaamldo ddses the trace files defined before amdcexecutes the nam program for
visualization. The commanekit will ends the application and return the number 0 as status
to the system. Zero is the default for a cleait. Other values can be used to say that is a exit
because something fails.

At the end of ns program we should call

time the termination should occur. For example,

Pya Fd MHp®n
wi || be didsad ato tciadrndded hi@&tineteod of the simulator allows us to

schedule events explicitly.

The simulation can then begin using the command

$ns run

Definition of a network of links and nodes
The way to define a node is

set n0O [$ns node]

Thenodeis createdvhich is printed by the vaable n0. When we shall refer to that node in
the script we shall thus write $n0.
Once we define several nodes, we can define the links that connect them. An example

of a definition of a link is:

$ns duplexlink $n0 $n2 10Mb 10ms DropTail

Which means that $n0 and $n2 are connected usingliestional link that has 10ms
of propagation delay and a capacity of 10Mb per sec for each direction.

To define a directional link instead of adbii r ect i onal one, we shol
' i nko by ifinskiompl e x

In NS, an output queue of a node is iempented as a part of each link whose input is
that node. The definition of the link then includes the way to handle overflow at that queue.
In our case, if the buffer capacity of the output queue is exceeded then the last packet to
arrive is dropped. Manglternative options exist, such as the RED (Random Early Discard)
Dept. of EE, CIT, Gubbi Page nd

Computemetworks Laboratory 201718

mechanism, the FQ (Fair Queuing), the DRR (Deficit Round Robin), the stochastic Fair
Queuing (SFQ) and the CBQ (which including a priority and a ragabah scheduler).

In ns, an output quee of a node is implemented as a part of each link whose input is
that node. We should also define the buffer capacity of the queue related to each link. An

example would be:

#set Queue Size of link (r02) to 20

$ns queuelimit $n0 $n2 20

Agents and Applications

We need to define routing (sources, destination® #gents (protocols) the
application that use them.
FTP over TCP

TCP is a dynamic reliable congestion control protocol. It uses Acknowledgements
created by the destination to know whether packets are well received.

There are number variants of the TCitpcol, such as Tahoe, Reno, NewReno,

Vegas. The type of agent appears in the first line:

set tcp [new Agent/TCP]

The commanéns attachragent $n0 $tcpdefines the source node of the tcp connection.

The command

set sink [new Agent /TCPSihk

Defines the behavior of the destination node of TCP andrest it a pointer called sink.

#Setup a UDP connection

set udp [new Agent/UDP]
$ns attachagent $n1 $udp
set null [new Agent/Null]
$ns attachagent $n5 $null
$ns connect $udp $null

$udp set fid_2

Dept. of EE, CIT, Gubbi Page nd

Computemetworks Laboratory 201718

#setup a CBR over UDP connection

set cbr [new
Application/Traffic/CBR]

$cbr attachagent $udp
$cbr set packetsize_0D
$cbr set rate_ 0.01Mb

$cbr set random_ false

Above shows the definition of a CBR application using a UDP agent

The command$ns attachagent $n4 $sink defines the destination node. The
commandns connect $tcp $sinkinally makes the TCP connection between the source and
destination nodes.

TCP has many parameters with initial fixed defaults values that can be changed if
mentioned explicitly. For example, the default TCP packet size Isé=e of 1000bytes.This
can be changed to another value, say 552bytes, using the cortopnsket packetSize
552

When we have several flows, we may wish to distinguish them so that we can identify
them with different colors in the visualization parhig is done by the commar®icp set
fid 1t hat assigns to the TCP connection a fl ow
flow identification of fA20 to the UDP connec
CBR over UDP
A UDP source and destination is defined in a similar way #seicase of TCP.

Instead of defining the rate in the command $cbr set rate_ 0.01Mb, one can define the

time interval between transmission of packets using the command.

$cbr set interval 0.005
The packet size can be set to some value using

$cbr set packetSize <packet size3

Scheduling Events
NS is a discre event based simulation. The tcp script defines when event should

occur. The initializing command set ns [new Simulator] creates an event scheduler, and

events are then scheduled using the format)
$ns at <time><event>

Dept. of EE, CIT, Gubbi Page n®

Computemetworks Laboratory 201718

The scheduler is started when running ns that is tihrtug command $ns run.

The beginning and end of the FTP and CBR application can be done through the following

command
Pya |u nowm

Pbya Fid wmon
Pya G MHNO®

Pya G MHNO®

Structure of Trace Files
When tracing into an output ASCII file, the trace is organized in 12 fields as follows

in fig shown belowThe meaning of the fields are:

Event| Time | From| To PKT | PKT | Flags| Fid | Src | Dest | Seq | Pkt

Node| Node| Type | Size Addr | Addr | Num | id

1. The first field is the event type. It is given by one of four possible symbols,rd-+wyhich
correspond respectively tocesve (at the output of the link), enqueued, dequeued and
dropped.

The second field gives the time at which the event occurs.

Gives the input node of the link at which the event occurs.

Gives the output node of the link at which the event occurs.

Gives thepacket type (eg CBR or TCP)

Gives the packet size

Some flags

© N o g s~ w D

This is the flow id (fid) of IPv6 that a user can set for each flow at the inpuitiGcript
one can further use this field for analysis purposes; it is also used when specifying stream
colorfor the NAM display.
9. This i s the source address given in the fol
10.This is the destination address, given in the same form.
11.Thi s i s t he net wor k | ayer protocol 6s pac
implementations in a real network do ne sequence number, ns keeps track of UDP
packet sequence number for analysis purposes
12.The last field shows the Unique id of the packet.

Dept. of EE, CIT, Gubbi Page n&/

Computemetworks Laboratory

201718

XGRAPH

The xgraph program draws a graph on atisplay given data read from either data

file or from standard inpuf no files are specified. It can display upto 64 independent data

sets using different colors and line styles for each set. It annotates the graph with a title, axis

labels, grid lines or tick marks, grid labels and a legend.

Syntax:

Xgraph[options] file-name

Options are listetiere
/-bd <color> (Border)
This specifies the border color of the xgraph window.

/-bg <color> (Background)

This specifies the background color of the xgraph window.

/-fg<color> (Foreground)

This specifies the foreground color of the xgraph window.
/-If <fontname> (LabelFont)

All axis labels and grid labels are drawn using this font.
[-t<string> (Title Text)

This string is centered at the top of the graph.

/-x <unit name> (XunitText)

This is the unit name fortheax x i s . l'ts defaul't

/-y <unit name> (YunitText)

This is the unit name forthegyx i s. |1t s default

Dept. of EE, CIT, Gubbi

s fnAXo.
s YO
Page n@

Computemetworks Laboratory 201718

Awk - An Advanced

awk is a programmable, pattemmatching, and processing tool available in UNIX. It
works equally well with text and numbers.

awk is not just a commandbut a programming language too. In other words, awk
utility is a pattern scanning and processing language. It searches one or more files to see if
they contain lines that match specified patterns and then perform associated actions, such as
writing the Ine to the standard output or incrementing a counter each time it finds a match.

Syntax:

g1 2LIGA2Y waSt SOGA 2\

Here, selection_criteria filters input and select lines for the action component to act
upon. The selection_criteria is enclosed within single quotes and the wadtiom the curly
braces. Both the selection_criteria and action forms an awk program.

Example: $ awk o6/ manager/ {print}d emp. | st
Variables

Awk allows the user to use variables of there choice. You can now print a serial
number, using the variable koumtnd apply it those directors drawing a salary exceeding
6700:
$awkiFo| 0 6$3 == fidirectoro && $6 > 6700 {
kount =kount+1
printf A %W3¥%dwBOskwunt, $2, $3, $6 } 6 empn. | st

THE 1f OPTION: STORING awk PROGRAMS IN A FILE

You should holds large awk ggrams in separate file and provide them with the awk
extensi on for easier I dentification. Let 6s
empawk.awk:
$ cat empawk.awk

Observe that this time we havendét used g

now use awk with théf filenameoption to obtain the same output:

awk ¢C ¢ pf @mpawk.awk empn.Ist

THE BEGIN AND END SECTIONS
Awk statements are usually applied to all lines selected by the address, and if there are

no addresses, then they are applied to every line of input. But, Haxeito print something

Dept. of EE, CIT, Gubbi Page n®

Computemetworks Laboratory 201718

before processing the first line, for example, a heading, then the BEGIN section can be used
gainfully. Similarly, the end section useful in printing some totals after processing is over.
The BEGIN and END sections are optional &k the form

BEGIN {action}

END {action}

These two sections, when present, are delimited by the body of the awk program. You
can use them to print a suitable heading at the beginning and the average salary at the end.
BUILT -IN VARIABLES

Awk has severabuilt-in variables. They are all assigned automatically, though it is
also possible for a user to reassign some of them. You have already used NR, which signifies
the record number of the current Il i ne. We 0 |
varigble.
The FS Variable as stated elsewhere, awk uses a contiguous string of spaces as the default
field delimiter. FS redefines this field separator, which in the sample database happens to be
the |. When used at all, it must occur in the BEGIN sectiomaiothe body of the program
knows its value before it starts processing:
BEGIN {FS=0]| 0}
This is an alternative to thid- option which does the same thing.
The OFS Variable when you used the print statement with corseparated arguments,
each argumentwassepar ated from the other by a space
separator, and can reassigned using the variable OFS in the BEGIN section:
BEGIN { OFS=06-06 }
When you reassign this variable with a ~ (tilde), awk will use this character for degjrfit
print arguments. This is a useful variable for creating lines with delimited fields.
The NF variable NF comes in quite handy for <c¢cleanin
contain the right number of fields. By using it on a file, say emp.Istcgadocate those lines

not having 6 fields, and which have crept in due to faulty data entry:

$awk OBEGI N {FS = dA]| o}
NF! =6 {
Print ARecord No f, NR, fAhaso, Afieldso}d en

Dept. of EE, CIT, Gubbi Page ndO

Computemetworks Laboratory 201718

Part-A
Experiment No: 1 Date:
FOUR NODE POINT TO POINT NETWORK

Aim: Smulate afour node point to point network with duplex links between them. Set queue
size and vary the bandwidth and find number of packets dropped.

set ns [new Simulator] # Letter S is capital

set nf [open PAl.nam w] # open a nam trace file in writeoabe
$ns namtraceall $nf # nf nam filename

set tf [open PAL.tr w] # tf trace filename

$ns traceall $tf

proc finish { } {
global ns nf tf
$ns flushtrace # clears trace file contents
close $nf
close $tf
exec nam PAl.nam &
exit 0
}
set n0 [$ns node} creatingd nodes
set n1[$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplexlink $n0 $n2 200Mb 10ms DropTail # establishing links
$ns duplexlink $n1 $n2 200Mb 10ms DropTail

$ns duplexlink $n2 $n3 200Mb 10ms DropTail

$ns queuelimit $n0 $n2 10

$ns queuelimit $nl $n2 10

$ns queuelimit $n2 $n3 10

set udpO [new Agent/UDP] # attaching transport layer protocols
$ns attachragent $n0 $udpO

set cbrO [new Application/Traffic/CBR] #attaching application layer protocols
$cbr0 set mcketSize500

$cbr0 set interval 0.005

$chr0 attach-agent $udpO

set nullO[new Agent/Null] # creating sink(destination) node

$ns attachagent $n3 $null0
$ns connect $udpO $null0

Dept. of EE, CIT, Gubbi Page nd1l

Computemetworks Laboratory 201718

$ns at 0.1 "$cbrO start"”
$ns at 1.0 "finish"
$ns run

AWK file :(Openanew edi tor wusing fAvVi commando and wr
extension)
#1 mmedi ately after BEGI N should open braces
BEGIN{c=0;}

{
if($1= ="d")

{ c++;
printf("%s \t%s\n",$5,$11);
}

END{printf("The number of packets dropped =%d \n",c);}

Steps for execution

U Open vi editor and type progr am. Pr og!
tcl o

[root@localhost ~]# vi labl.tcl
U Save the program by pressiige S C first, jokiowed byi Shi f t kegsnd : O
simultaneously and tyge w gaod pres€nter key.
U Open vi editor and typewk program. Program name should have the
extenawkon 0
[root@localhost ~J# vi labl.awk
U Save the program by pressifigg S C fiest, jolowed byd Shi f t kegsnd : 0O
simultaneously and tyge w cand pres€nter key.
U Run thesimulation program
[root@localhost~]# ns labl.tcl
U Here i n simlicates network simulator. We get the topology shown in the
snapshot.
U Now press the play button in the simulation window and the simulation will
begins.
U After simulation is completed riawk file to see the output ,
[root@localhost~]# awki f labl.awk labl.tr
U To see the trace file contents open the file as ,

[root@localhost~]# vi labl.tr

Trace file contains 12 columns:
Event type, Event time, From Node, To Node, Packet Type, PacketFlage,
(indicated by--------), Flow ID, Source address, Destination address, Sequence ID,

Packet ID
Contents of Trace File Topology Output

Dept. of EE, CIT, Gubbi Page nd2

Computemetworks Laboratory 201718

i @ e sam: ool 5\ | root@localhost:~
Eile Edit View Terminal Tabs Help Sl bt File Edit View Terminal Tabs Help
RS A 4t)& > | omm [rootlocalnost -J# vilabOlecl
T 0.10108 0 2 cbr 500 0003000 _ ; [poot@localhost ~J# awk - -awk 1ab0l.tr
+ 0.10108 2 3 cbr 500 ——--—mn 00.03000 % - ?;E izg
- 0.10108 2 3 cbr 500 ----——- 0003000 @ o) i T30
+0.105 0 2 cbr 500 ——————— 0003011 i 10
sweaim i —onvaori IS
r 0. cbr 500 -——-—— . . —
+ 0.10608 2 3 cbr 500 —————— 00.03.011 ¥ cor o
- 0.10608 2 3 cbr 500 ——————- 00.03.011 - = :bi 150
+0.11 0 2 cbr 500 ———-——- 00.03.022
- 0.11 0 2 cbr 500 ————— 00.03.022 t - “Er ig:
T 0.11108 0 2 cbr 500 —————— 00.03.022 0} cor
+ 0.11108 2 3 cbr 500 -—m-mmn 00.03.022 1 cbr 169
- 0.11108 2 3 cbr 500 ———-——- 00.03.022 Jjji bz 171
+ 0.115 0 2 cbr 500 ——————— 00.03.033 s cbr 174
- 0.115 0 2 cbr 500 -----—— 00.03.033 cbr 17
r 0.11608 0 2 cbr 500 ——————- 00.03.033 | I I | L EE; i;g
+ 0.11608 2 3 cbr 500 ————— 00.03.033 . o
- 0.11608 2 3 cbr 500 —————— 0 0.0 3.033 T“'BFMH e U The number of packets dropped =16
+0.12 0 2 cbr 500 —--om—o 0 0.0 3.0 44 [root@localhost ~]#
- 0.12 0 2 cbr 500 ——————— 00.03.044
T 0.12108 0 2 cbr 500 ——---—v 00.03.044
+ 0.12108 2 3 cbr 500 ——---—- 00.03.044 —
|| Nam ConscevL|] ram: ooctab.of 8 e bocabost- | 1
Experiment No: 2 Date:

FOUR NODE POINT TO POINT NETWORK WITH TCP and UDP

Aim: Simulate a four node pdito point network with the links connected as follows:i nO
n2, nli n2 and n2 n3. Apply TCP agent betweenn@3 and UDP agent between hh3.
Apply relevant applications over TCP and UDP agents changing the parameter and
determine the number of deats sent by TCP / UDP.

set ns [new Simulator]

set nf [open lab2.nam w]

$ns namtraceall $nf

set tf [open lab2.tr w]

$ns traceall $tf

proc finish { } {

global ns nf tf

$ns flushtrace

close $nf

close $tf

exec nam lab2.nam &

exit 0

}

set n0 [$ns node]

setnl [$ns node]

set n2 [$ns node]

set n3 [$ns node]

$ns duplexlink $n0 $n2 10Mb 1ms DropTail
$ns duplexlink $n1 $n2 10Mb 1ms DropTail
$ns duplexlink $n2 $n3 10Mb 1ms DropTalil

set tcp0 [new Agent/TCP] # letters A, T,C,P are capital
$ns attachagent $10 $tcpO

set udpl [new Agent/UDP] # letters A,U,D,P are capital
$ns attachagent $nl1 $udpl

set null0 [new Agent/Null] # letters A and N are capital
$ns attachagent $n3 $null0

set sink0 [new Agent/TCPSink] # letters A, T,C,P,S are capital

$ns dtach-agent $n3 $sink0

Dept. of EE, CIT, Gubbi Page nd.3

Computemetworks Laboratory 201718

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

set cbrl [new Application/Traffic/CBR]
$cbrl attachragent $udpl

$ns connect $tcp0 $sink0

$ns connect $udpl $null0

$ns at 0.1 "$cbrl start"

$ns at 0.2 "$ftpO start"

$ns at 0.5 "finish"

$ns run

AWK file:(Open a new editor using Avi commando al
extension)

BEGIN{

udp=0;

tcp=0;

}

{

i f($1= = Ardo && $5 = = Acbro)

{

udp++;

}

else if($1 = = Aro && $5 = = fAtcpo)
{

tcp++;

}

}
END{

p r i n unfibéridfipackets sentby TCP=%th o6, t cp) ;
printf (ANumber of pancokdp)t s sent by UDP=%d
}

Steps for execution

0 Open vi editor and type program.tcl®r ogr am
[root@localhost ~]# vi lab2.tcl
U Save the program by meingii E S C fiesg, foltowed byt Shi f tkewnd : 0O
simultaneously and tyge w cand pres€nter key
U Open vi editor and typawk program. Program name should have the extension
A.awk 0
[root@localhost ~]# vi lab2.awk
U Save the program by pressiige S € yfist, followed byt Shi f tkewnd : 0O
simultaneously and tyge w cand pres€nter key
U Run the simulation program
[root@localhost~]# ns lab2.tcl
o Herefi n s$ndicates network simulator. We get the topology shown in the
snapshot.

Dept. of EE, CIT, Gubbi Page nd4

Computemetworks Laboratory 201718

o0 Now press the play o in the simulation window and the simulation will
begins.

U After simulation is completed riawk file to see the output ,

[root@localhost~]# awki f lab2.awk lab2.tr
U To see the trace file contents open the file as,

[root@localhost~]# vi lab2.tr

13m; /foolPAZ.nam

Fie Views Analysis IotPAZaam

root®|ocal host~

Flle Edit View Teminal Tabs Help
W P 1 » W viom Sz (100tElocalhost - J# auk -f 1ab02.auk PA2.tr [«
== The nunber of packets of send by TCP 676

7 The nurber of packets of send by UDP 210[root@localhost ~1#|

Le 1< 5= € (B |
T%
[

N

|]
| | |

ol G2 115 00D Mebs 10 0 ek gl el

==

Topology Output

Dept. of EE, CIT, Gubbi Page nd5

Computemetworks Laboratory 201718

Experiment No: 3 Date:
ETHERNET LAN USING N -NODES

Aim: Si mul ate an Ethernet LAN using 6énd nodes,
compare throughput.

set ns [new Simulator]
set tf [open lab5tr w]

$ns traceall $tf
set nf [open lab5.nam w]
$ns namtraceall $nf

$ns color 0 blue

set nO [$ns node]
$n0 color "red"

set nl [$ns node]
$n1 color "red"

set n2 [$ns node]
$n2 color "red"

set n3 [$ns node]
$n3 color "red"

set n4 [$ns node]
$n4 color "magenta
set n5 [$ns node]
$n5 color "magenta”
set n6 [$ns node]
$n6 color "magenta”
set n7 [$ns node]
$n7 color "magenta”

$ns makelan "$n0 $nl $n2 $n3" 100Mb 300ms LL Queue/ DropTail Mac/802_3
$ns makelan "$n4 $n5 $n6 $n7" 100Mb 300ms LL Queue/ DropTdiMac/802_3

$ns duplexlink $n3 $n4 100Mb 300ms DropTail
$ns duplexlink -op $n3 $n4 color "green"

set error rate. Here ErrorModel is a class and it is single word and space should not
be given between Error and Model

Dept. of EE, CIT, Gubbi Page nd6

Computemetworks Laboratory 201718

lossmodel is a command and it isingle word. Space should not be given between loss
and model

set err [new ErrorModel]

$ns lossmodel $err $n3 $n4

$err setrate_ 0.1

error rate should be changed for each outp

set udp [new Agent/UDP]

$ns attachagent $nl Sudp

set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp

$cbr set fid_ 0

$cbr set packetSize 1000

$cbr set interval_ 0.0001

set null [new Agent/Null]

$ns attachagent $n7 $null

$ns connect $udp $null

proc finish { } {

global ns nf tf

$ns flushtrace

close $nf

close $tf

exec nam lab5.nam &
exit 0

}

$ns at 0.1 "$cbr start"
$ns at 3.0 "finish"
$ns run

AWK file:(Open a new editor using Avi commando al
extension)

BEGIN{

pkt=0;

time=0;

1

if($1=="r" && $3=="9" && $4=="7"){
pkt = pkt + $6;

time =$2;

}

}
END {

printf("throughput:%fMbps",((pkt / time) * (8 / 1000000)));
}

Steps for execution

U0 Open vi editor and type program.tc®r ogr am
[root@localhost ~]# vi laB.tcl

Dept. of EE, CIT, Gubbi Page nd7

Computemetworks Laboratory 201718

U Save the grgram by pressing E S C fiese, foltowed byt Shi f tkeysn d
simultaneously and tyge w gand pres€nter key
U Open vi editor and typawk program. Program name should have the extension
f.awk 0
[root@localhost ~]# vi laB.awk
U Save the program by @ssingi E S C fiesg foltowed byt Sh i f t keys n d
simultaneously and tyge w cand pres€nter key
U Run the simulation program
[root@localhost~]# ns laB.tcl
o Herefi n sndicates network simulator. We get the topology shown in the
snapshot.
0 Now presghe play button in the simulation window and the simulation will
begins.
U After simulation is completed rawk file to see the output ,
[root@localhost~]# awki f lab3.awk lalB.tr
U To see the trace file contents open the file as,
[root@localhost~]# viab3.tr

Heref h iadicates host.

¥ T root@|ocalhost:~ i =B * ¥ i nam: ffoot/l5.nam =]/ 5)%

File Edit View Teminal Tabs Help ‘5'9 Mews nalysis | Mot nan ‘|

H0.106 tep 40 - 00.05.000 :‘ I I T T T eye ey |

h0.126 tep 40 - 02.03.001 = : ===

+0.206 tep 40 ——-———- 00.05000 s = i

- 0.206 tep 40 ——--—- 00.05000 o 0 Q @

+0.226 tep 40 —--——-- 02.03.001 £ \“:\/

S 0.226 tep 40 - 02.03.001 T 1

T 0.300014 6 4 tep 40 - 00.05.000

+0.300014 4 5 tep 40 ——---—- 00.05000 9]

- 0.300014 4 5 tep 40 —--—--- 00.05000 of

T 0.300024 6 3 tep 40 ——---—- 02.03.001

h 0.300024 3 6 ack 40 -—---—- 03.02.002

T 0.301334 4 5 tcp 40 —---——- 00.05000 vy

+0.301334 5 4 ack 40 - 05.00.003 & LN o,

- 0.301334 5 4 ack 40 - 05.00.003 i

T 0.302654 5 4 ack 40 -—---—- 0500003 K

h 0.302654 4 6 ack 40 ----——- 0500003 — -

+giggg§igg“ﬁg ““““ ggggggg I A T

+ 0402654 4 G zzk 40 _______ 0 50 DU 0 3 Auto lagout: CaWCI 075 Iterations 10 W Recalc m‘ﬂl

- 0.402654 4 6 ack 40 —--———- 05.00.003

T 0.500034 6 2 ack 40 ——---— 03.02.002

h 0.500034 2 6 tep 1040 ------- 02.03.014 |

h 0.500034 2 6 tep 1040 ------- 02.03.025 H

"17.tr" 18132L, 907683C 1,1 TUP ZE |ﬂ mal@\oca\hashl[lmm:tml\imm ;[NamCansa\evl‘ i
Topology Output

Dept. of EE, CIT, Gubbi Page nd8

o

(@

Computemetworks Laboratory 201718

~ root@localhost- B -2 <
File Edit View Terminal Tabs Help

[root@localhost ~]# awk -f lab5.awk 15.tr [4]
throughput:49.003690Mbps[root@localhost ~]# I

]

This aboveoutputis for error rate 0.1. During next execution of simulation change error rate
to 0.3, 0.5,¢é..and check its effect on throu

Experiment No: 4 Date:
ETHERNET LAN US ING N-NODES WITH MULTIPLE TRAFFIC

Aim: Si mul ate an Ethernet LAN using O6nd nodes
congestion window for different source / destination

set ns [new Simulator]
set tf [open pgm?7.tr w]
$ns traceall $tf

set nf [open pgm7nam w]
$ns namtraceall $nf

set n0 [$ns node]
$n0 color "magenta”
$n0 label "src1"

set nl [$ns node]
set n2 [$ns node]
$n2 color "magenta”
$n2 label "src2"

set n3 [$ns node]
$n3 color "blue"
$n3 label "dest2"
set n4 [$ns node]
set n5 [$ns node]
$n5 color"blue”

Dept. of EE, CIT, Gubbi Page nd9

Computemetworks Laboratory 201718

$n5 label "dest1"

$ns makelan "$n0 $n1 $n2 $n3 $n4" 100Mb 100ms LL Queue/ DropTail Mac/802_3 #
should come in single line
$ns duplexlink $n4 $n5 1Mb 1ms DropTalil

set tcp0 [new Agent/TCP]

$ns attachragent $n0 $tcp0

set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0

$ftp0 set packetSize_ 500
$ftp0 set interval_ 0.0001

set sink5 [new Agent/TCPSink]
$ns attachagent $n5 $sink5

$ns connect $tcp0 $sink5

set tcp2 [new Agent/TCP]

$ns attachagent $n2 $tcp2

set ftp2 [new Application/FTP]
$ftp2 attach-agent $tcp2

$ftp2 set packetSize_ 600
$ftp2 set interval_ 0.001

set sink3 [new Agent/TCPSInk]
$ns attachagent $n3$sink3
$ns connect $tcp2 $sink3

set filel [open filel.tr w]
$tcpO attach $filel
set file2 [open file2.tr w]
$tcp2 attach $file2

$tcpOtrace cwnd_ # must put underscore (_) after cwnd and no space between them
$tcp2 trace cwnd_

proc finish { } {

global ns nf tf

$ns flushtrace

close $tf

close $nf

exec nam pgm7.nam &
exit 0

}

$ns at 0.1 "$ftpO start"
$ns at 5 "$ftp0 stop”
$ns at 7 "#tpO start”
$ns at 0.2 "$ftp2 start"
$ns at 8 "$ftp2 stop”
$ns at 14 "$ftp0 stop"
$ns at 10 "$ftp2 start"
$ns at 15 "$ftp2 stop"
$ns at 16 “finish"

$ns run

Dept. of EE, CIT, Gubbi Page n0

Computemetworks Laboratory 201718

AWK file:(Open a new editor using fAvi commando
extension)

cwnd:- means congestion window

BEGIN {

}

{

i f($6= ="cwnd_") # dondot | eave space after
printf("%f \t%f\t\n",$1,$7); # you must put\n in printf

}

END {

}

Steps for execution

U Open vi editor and type program. Program name should havexthee n s.tcl ©@ n
[root@localhost ~]# vi laB.tcl
U Save the program by pressinge S C fiese, foltowed byt Shi f tkeysn d
simultaneously and tyge w gand pres€nter key
U Open vi editor and typawk program. Program name should have the extension
A.awk 0
[root@localhost ~]# vi laB.awk
U Save the program by pressifige S C fiesg, foltowed byt Sh i f t keys n d
simultaneously and tyge w cand pres€nter key
U Run the simulation program
[root@localhost~]# ns lad.tcl
U After simulation is completadin awk file to see the output ,
[root@localhost~]# awki f lab4.awk filel.tr >al
[root@localhost~]# awki f lab4.awk file2.tr >a2
[root@localhost~]# xgraph al a2
U Here we are using the congestion window trace filesilied..tr andfile2.tr and we
are redirecting the contents of those files to new filesadand a2 usingoutput
redirection operator (>)
U To see the trace file contents open the file as,
[root@localhost~]# vi lal.tr
Topology:

Dept. of EE, CIT, Gubbi Page n@21

o

a

Computemetworks Laboratory 201718

<]

nam: /root/l7.nam

Fle Views Analysis | JrootA7 nam \|

Lol z= 140D |]

« | « |] | > | " | ‘ 10618556

Step: 20.0ms ‘
—]

m

[T
‘ |I\IIII\I\‘I\IIII\I\‘I\IIII\H‘I\IIIHH‘IHIIHH‘IHIIIH\‘I\IIIIH\‘I\IIIIH\‘IHIIHH‘IHIIHH‘ IIIH\‘IIIIIIH\‘IIIIIIH\‘IIIHHH‘IIIHIH\‘IIIHIH\‘IIIHIH\‘\IHIIIH‘HHIIIH‘HHIIIH‘HHIIIH‘H\IIIIH‘\IIIIIIH‘\IIIIIIH‘\IIIIIIH‘HIIIIIH‘HIIHIH‘HIIHIH‘HIIHIH
Auto layout: Ca Il].15 Cr [0.75 Iterations |10 I Recalc re-layout | reset

|

|
Eé\ (@& root | root@loca\th nam: .v‘rooﬁl]lL [Nam Conm‘ E

Output:

M

X Graph

A

40.0000

/ |
35.0000

30,0000 r’/ Pt
25.0000 £

20.0000

15.0000 J

10.0000

5.0000

I
0.0000

0.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000

Experiment No: 5 Date:

SIMPLE ESS WITH WIRELESS LAN

Aim: Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and
determine the performance with respect to transmission of packets.

set ns [new Simulator]
set tf [open lab8.tr w]
$ns traceall $tf

Dept. of EGE, CIT, Gubbi Page n@2

Computemetworks Laboratory

201718

set topo [new Topography]

$topo load_flatgrid 1000 1000

set nf [open lab8.nam w]

$ns namtraceall-wireless $nf 1000 1000

$ns nodeconfig -adhocRouting DSDV\
-lIType LL \
-macType Mac/802_121
-ifgType Queue/DropTail \
-ifgLen 50\
-phyType Phy/WirelessPhy
-channelType Channel/WirelessChannel
-prrootype Propagation/TwoRayGround\
-antType Antenna/OmniAntennal\
-topolnstance $topo\
-agentTrace ON\
-routerTrace ON

creategod 3

set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]

$n0 label "tcp0"
$n1 label "sink1/tcpl”
$n2 label "sink2"

$n0 set X_ 50
$n0 set Y_ 50
$n0setZ 0O
$nl set X_ 100
$nlsetY_ 100
$nlsetZ O
$n2 set X_ 600
$n2 set Y_ 600
$n2setZ 0O

$ns at 0.1 "$n0 setdest 50 50 15"
$ns at 0.1 "$n1l setdest 100 100 25"
$ns at 0.1 '$n2 setdest 600 600 25"
set tcp0 [new Agent/TCP]

$ns attachagent $n0 $tcp0

set ftpO [new Application/FTP]
$ftp0 attach-agent $tcp0

set sink1 [new Agent/TCPSink]

$ns attachagent $nl $sinkl

$ns connect $tcp0 $sinkl

set tcpl [new Agent/TCP]

$ns attachagert $n1 $tcpl

set ftpl [new Application/FTP]
$ftpl attach-agent $tcpl

set sink2 [new Agent/TCPSink]

$ns attachagent $n2 $sink?2

Dept. of EE, CIT, Gubbi

Page n@23

Computemetworks Laboratory 201718

$ns connect $tcpl $sink?2
$ns at 5 "$ftpO0 start"
$ns at 5 "$ftpl start”

$ns at 100 "$n1l setdest 550 550 15"
$ns at 190 "$n1 setdess0 70 15"
proc finish { } {

global ns nf tf

$ns flushtrace

exec nam lab8.nam &

close $tf
exit 0
}
$ns at 250 "finish"
$ns run
AWK file:(Open a new editor wusing Avi commando a
extension)
BEGIN{
countl=0
count2=0
packl1l=0
pack2=0
timel1l=0
time2=0
}
{
if($1=="r"&& $3=="_1 " && $4=="AGT")
{
countl++
packl=packl+$8
timel=$2
}
if($1=="r" && $3=="_2 " && $4=="AGT")
{
count2++
pack2=pack2+$8
time2=%$2
}
}
END{

printf("The Throughput froomO to n1: %f Mbpdn 0 , ((countl*pack1*8)/ (t
printf("The Throughput from nl to n2: %f Mbps", ((count2*pack2*8)/(time2*1000000)));

}

Steps for execution
U0 Open vi editor and type program.tcl®r ogr am
[root@ocalhost ~]# vi lalb.tcl
U Save the program by pressinge S C ficst, foltowed byt Shi f tkewnd : 0O
simultaneously and tyge w cand pres€nter key

Dept. of EE, CIT, Gubbi Page n®4

Computemetworks Laboratory 201718

U Open vi editor and typawk program. Program name should have the extension
f.awk 0
[root@localhost J## vi labb.awk
U Save the program by pressifige S C fiesg, foltowed byt Sh i f t keys n d
simultaneously and tyge w cand pres€nter key
U Run the simulation program
[root@localhost~]# ns lab.tcl
0 Herefi n sndicates network simulator. We get the tamy shown in the
snapshot.
0 Now press the play button in the simulation window and the simulation will
begins.
U After simulation is completed rawk file to see the output ,
[root@localhost~]# awki f lab5.awk lalb.tr
U To see the trace file contents opka file as ,
[root@localhost~]# vi lab.tr

Output:

v nam; labg.nam =151 v nam; labg.nam

‘ﬂle views Analysis | labbaam \‘ e Views Analysis labdaan

« |« | om e 15‘11sss1l‘5ﬂvﬂl‘"ﬂ= ‘ m < [> "
‘ ‘ ‘ | L

iy

Lo Lo =5 (@)
Lo loiza |@(d |

st
skl .
W Ll

m\\I‘\HIﬁmﬂlﬂﬂl\‘ﬂl\mﬂ‘ﬂH\HH‘HHHIH‘\IHHIH‘\HH\H\‘\HHI\H‘IHHI\H‘\HHHH‘HHI\H\'HHIHH‘HHHH\‘HHHHI‘H\IHHI‘\HHH\\‘HH\HI\‘HIWI\‘HH\HH‘HHHIH‘\IHHIH‘\HH\H\‘\\HH\H‘IHHI\H‘IHHHH‘H\HH\\'HHIHH'HHHH\‘HHHHI‘H\IHHI‘\H\HH\‘H\HHI\‘HI\H\I\‘HIWH‘HHHH\‘\IH]I“IIJIIII“III“IIIJIIIJIIII‘IIIlIIIIIIIIIIIIIIIIMIII‘IIIJIIIIﬁﬁl|IIIIIIIJIIIIlIIIlIIIIIIIIIIIlhllhIIJIIIJIIIIIIIIlIIIIIIIIIIIIIIII“III“IIIJIIIIIIII'I

aé‘ mm@\oca\hast~|Dnam:lah8.nam |L[NamCunsa\ev1‘ [] ;| im@hxalhnstwmmm [ab8.nam |_[NamConsdevl‘ [1
Node 1 and 2 are communicating Node 2 is moving towards node 3
et [-]5)% root@localhost:= | BEE;
‘ Fle Views Analysis | Tabfnam \‘ File Edit View Terminal Tabs Help
‘ LR R TP T T S S e e ‘E 0.036400876 _0_ RTR --- 0 message 32 [0 0 0 0] ------- [0:255 -1:255 32 0] [*]
| ~ —|r 0.037421112 .1_RTR -0 32 [0 fEEEEFEE O 800] [0:255 -1:255
PN L 32 0]
M 0.10000 0 (50.00, 50.00, 0.00), (50.00, 50.00), 15.00
2 M 0.10000 1 (100.00, 100.00, 0.00), (100.00, 100.00), 25.00
ﬂ M 0.10000 2 (600.00, 600.00, 0.00), (600.00, B00.00), 25.00
s 0.182633994 1 RTIR --- 1 message 32 [0 0 0 0] —--—--- [1:255 -1:255 32 0]
il " r 0.183694230 _O_ RIR --- 1 32 [0 EEFEEFFE 1 BOO] [1:255 -1:255
e 32 0]
J dinigapn s 0.882774710 _2_ RTR --- 2 message 32 [0 00 0] —————- [2:255 -1:255 32 0]
s 5.000000000 _0_ AGT -—- 3 tep 40 [0 0 0 0] ——-——— [0:0 1:0 32 0] [0 0] 0 0
r 5.000000000 _0_ RTR --- 3 tcp 40 [0 0 0 0] —------ [0:01:0 32 0] [00] DO |
s 5.000000000 O0_ RIR --- 3 tcp 60 [00 0 0] ———- [0:01:03821] [00]00 |
5 5.000000000 _1_ AGT --— 4 tcp 40 [0 0 0 0] —————- [1:12:032 0] [00] 00
w r 5.000000000 _1_ RTR --- 4 tcp 40 [0 0 0 0] ——-—-m= [1:12:0 32 0] [00] 00
r 5.004812650 _1 AGT --- 3 tcp 60 [13a 1 0 800] —--————- [0:0 1:0 32 1] [0 0] 1]
T = 0
— 5 5.004812650 _1_ AGT --- 5 ack 40 [0 0 0 0] -----—- [1:0 0:0 32 0] [0 0] 00
| ool R b bobbobbinks 5004812650 "1~ RTR - 5 ack 40 [0 0 0 0] ————— [1:0 0:0 32 0] [00] 00
5 5.004812650 _1_ RTR —-—— 5 ack 60 [0 0 0 0] —————- [1:0 0:0 32 0] [0 0] 00
B r 5.008977357 _0_ AGT --- 5 ack 60 [13a 0 1 800] ------- [1:0 0:0 32 0] [0 0] 1|
0
i I s 5.006977357 _0_ AGT --- 6 tcp 1040 [0 0 0 0] -—---—- [0:0 1:0 32 0] [1 0] 0 0
] (B oplochest [T bam] Nam Corsde v B 1ab8. o 1286541, 11456314 11 Top [7]

Node 2 is coming back from node 3 towards nodel Trace File

Dept. of EGE, CIT, Gubbi Page n@25

Computemetworks Laboratory 201718

Herefi M dndicates mobile nodef, A G Tinlicates Agent lace,i R T Rndlicates

Route Trace

File Edit View Terminal Tabs Help

root@ Jocalhost:~ === [root@localhost ~]# awk -f lab8.awk lab8.tr

The Throughput from n0 to nl: 5863.442245Mbps

The Throughput from nl to n2: 1307.611834 Mbps[root@localhost ~]# D

@ TueDec 14, 330PM Q

& Appications. Actions @Y & £ B

-

Fle Edt View Teminal Tabs Help
[root@localhost ~]# vi lab8.tel

[root@localhost ~]# ns lab8.tcl

warning: Please use -channel as shown in tcl/ex/wirel
nun_nodes is set 3

INITIALIZE THE LIST xListHead

channel.cc:sendUp - Cale highestAntennaZ_ and distCST_
highestAntennal_ = 1.5, distCST_ = 550.0

SORTING LISTS ...DONE!

[root@localhost ~1#

=1

@ rtecor- | S

Experiment No: 6 Date:

LINK STATE ROUTING ALGORITHM
Aim: Implementation of Link g&teRouting algorithm for a given graph.

o AL")
vy
: ﬂz_
. hg

s Ny,

set val(stop) 10.0 # time of simulation end

#Create a ns simulator
Dept. of EE, CIT, Gubbi Page n26

Computemetworks Laboratory

201718

set ns [new Simulator]

#0pen the NS trace file
set tracefile [open prg6.tr w]
$ns traceall $tracefile

#0pen the NAM trace file
set namfile [open prg6.nam w]
$ns namtraceall $namfile

#Create 5 nodes
setnO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]

#Createlinks between nodes

$ns duplexlink $n0 $n1 100.0Mb 10ms DropTail
$ns queuelimit $n0 $nl 50

$ns duplexlink $n0 $n2 100.0Mb 10ms DropTail
$ns queuelimit $n0 $n2 50

$ns duplexlink $n2 $n3 100.0Mb 10ms DropTail
$ns queuelimit $n2 $n3 50

$ns duplexlink $n1 $n3 100.0Mb 10ms DropTail
$ns queuelimit $n1 $n3 50

$ns duplexlink $n3 $n4 100.0Mb 10ms DropTail
$ns queuelimit $n3 $n4 50

$ns duplexlink $n0 $n3 100.0Mb10ms DropTail
$ns queuelimit $n0 $n3 50

$ns duplexlink $n1 $n2 100.0Mb 10ms DropTail
$ns queuelimit $n1 $n2 50

#Give node position (for NAM)

$ns duplexlink -op $n0 $n1 orient right

$ns duplexlink -op $n0 $n2 orient rightdown
$ns duplexlink -op $n2 $r8 orient right

$ns duplexlink -op $n1 $n3 orient leftdown
$ns duplexlink -op $n3 $n4 orient leftdown
$ns duplexlink -op $n0 $n3 orient rightdown
$ns duplexlink -op $nl $n2 orient leftdown

#Set the link costs. All link costs are symmetric

$ns cost $nGBnl 2
$ns cost $n0 $n2 1
$ns cost $n0 $n3 3

Dept. of EE, CIT, Gubbi

Page n@7

Computemetworks Laboratory

201718

$ns cost $nl1 $n0 2
$ns cost $nl1 $n2 2
$ns cost $n1 $n3 3

$ns cost $n2 $nl 2
$ns cost $n2 $n0 1
$ns cost $n2 $n3 1

$ns cost $n3 $n2 1
$ns cost $n3 $n1 3
$ns cost $n3 $n0 3
$ns cost $n3 $n4 2

$ns cost $n4 $n2

#Setup a UDP connection
set udpO [new Agent/UDP]
$ns attachagent $n0 $udpO
set nulll [new Agent/Null]
$ns attachagent $n4 $nulll
$ns connect $udp0 $nulll
$udpO set packetSize 1500

#Setup a CBR Application over UDP connection
set cbrO [new Application'Traffic/CBR]

$cbr0 attachragent $udp0

$cbr0 set packetSize 1000

$cbr0 set rate 1.0Mb

$cbr0 set random_ null

$ns at 1.0 "$cbrO start"

$ns at 5.0 "$cbr0 stop”

$ns rtproto LS

#Define a 'finish' procedure
proc finish {} {
global ns tracefile namfile
$ns flushtrace
close $tracefile
close $namfile
exec nam prg6.nam &
exit 0
}
$ns at 12 "$val(stop)"
$ns at 11 “finish"
$ns at 10 "$ns halt"
$ns run

Dept. of EE, CIT, Gubbi

Page n@28

Computemetworks Laboratory 201718

AWK file
BEGIN{
tcppack=0
tcppackl1=0
}

if($1=="r"&&$4=="4"&&$5== "cbr"&&$6=="1000")
{
tcppack++;
}
}
END{
printf(" \n total number of data packets at Node 4 duto Link state algorithm: %d \n",
tcppack++);

}

Steps for execution
U Open vi editor and type program. Program name should have the exténgiba
[root@localhost ~)# vi lab.tcl
U Save the program by pressifige S C fiesg, foltowed byt Sh i f t keys n d
simultaneously and tyge w cand pres€nter key
U Open vi editor and typawk program. Program name should have the extension
A.awk 0

[root@localhost ~]# vi lab.awk
U Save the program by pressiige S C fiest, foltowed byt Shi f tkeysn d
simultaneously and tyge w gand pres€nter key
U Run the simulation program
[root@localhost~]# ns lab.tcl
o Heref n s$ndicates network simulato¥We get the topology shown in the
snapshot.
o Now press the play button in the simulation window and the simulation will
begins.
U After simulation is completed rawk file to see the output ,
[root@localhost~]# awki f lab6.awk lal®.tr
U To see the tracelé contents open the file as,
[root@localhost~]# vi lab.tr

Topology

Dept. of EE, CIT, Gubbi Page n@29

Computemetworks Laboratory 201718

e W frabyi Ikran

4 [] | 3 ke || | S

Sourcg/LUDF

| 0-0
N

OUTPUT
ATot al number. of routing paths
1. NO-N1-N2-N3-N4 : Total Cost i/
2. NO-N2-N1-N3-N4 : Total Cost iS
3. NO-N2-N3-N4 : Total Cost i
4. NO-N3-N4 : Total Cost i$H

A S h aacdrding tb Link State Algorithm N0-N2-N3-N4 having Total Cost is of

Part-B
Experiment No: 1 Date:
BIT STUFFING

AIM: Write a C/C++ program for bit stuffing and-dauffing in HDLC frame format.
THEORY:

Dept. of EE, CIT, Gubbi Page nB0

Computemetworks Laboratory 201718

The new technique allows dateames to contain an arbitrary number if bits and allows
character codes with an arbitrary no of bits per character. Each frame begins and ends with
speci al bit pattern, 01111110, call ed a f1 &
encounters five ansecutive ones in the data, it automatically stuffs a O bit into the outgoing
bit stream.

ALGORITHM for BIT STUFFING :

Stepl: Input data sequence
Step 2 Add start of frame to output sequence
Step 3 Forevery bit in input
a. Appendbit to output sequence
b. Isbita1?

Yes: Increment count
If count is 5, append 0 to output sequence and reset.count

No: Set countto O
Step 4 Add stop of frame bits to output sequence

ALGORITHM for BIT DESTUFFING :

Stepl: Input the stiffed sequence.
Step2: Remove start of frame from sequence

Step3: For every bit in input,
a. Append bit to output sequence.
b. Is bita 1?
Yes: Increment count. If count is 5, remove nex{Wwhich is 0)& reset count
No: Set count to O.
Step4: Remove end of frame from bits from sequence

C- LANGUAGE PROGRAM CODE

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main() { char ch,array[50]={"01111110"},recd_array[50];
int counter=0,i=8,j,k;

/I clrscr();
printf("Ente r the original data stream for bit stuffing:\n");

while((ch=getche())!=\r")

{if(ch=="1")
++counter;
else

counter=0; array[i++]=ch;
if(counter==>5)
{
array[i++]="'0";
counter=0;

Dept. of EE, CIT, Gubbi Page n@B1

Computemetworks Laboratory 201718

}

}
strcat(array,"01111110");

printf (" \n The stuffed data stream isin");
for(j=0;j<i+8;++))

printf("%c",array[j]);

counter=0;

printf(" \n The destuffed data stream isn");
for(j=8,k=0;j<i+8;++j)

if(array[j]=="1")

++counter;

else

counter=0;
recd_array[k++]=arra y[j];
if(counter==6)

break;

else if(counter==5 && array[j+1]=='0")
L

+4i;

counter=0;
}

}

for(j=0;j<=k -strlen("01111110");++j)
printf("%c",recd_arrayf[j]);

getch();

}

OUTPUT:

Enter the original data stream for bit stuffing:
001101111000011110

The stuffed data stream is:
011111100011011111000001111001111110

The destuffed data stream is:
0011011111000011110

Experiment No: 2 Date:
CHARACTER STUFFING

AIM: Implement the data link layer framing using charasteifing for a given binary
data.

THEORY:
Dept. of EE, CIT, Gubbi Page n@2

Computemetworks Laboratory 201718

The framing method gets around the problem of resynchronization after an error by having
each frame start with the ASCII character sequence DLE STX and the sequence DLE ETX. If
the destination eveps$ses the track of the frame boundaries all it has to do is look for DLE
STX or DLE ETX characters to figure out. The data link layer on the receiving end removes
the DLE before the data are given to the network layer. This technique is called character

stuffing.
ALGORITHM:
Stepl Start
Step 2 Read the character string to be transmitted in upper case.
Step3 For stuffing process, append at b
end with ODLE ETX6 as ending fl ag
Step4 Check the string whether it has 0D
Step5 | f yes then insert the string 6DL
character.
Step 8 Continue this process until the completion of string.
Step 7 Stuffed data is obtained.
Step 8 Now destuffing process, remove the appended string at start and end of st
Step 9 Continue this process until the last character of string.
Stepl0 I f yes then remove the string 6D
data.
Step 11 Continue this process until the last character of string.
Step 12 Original data has been obtained.
Step 13 Stop.

C- LANGUAGE PROGRAM CODE

#include<stdio.h>
#include<conio.h>
#include<string.h>
main()

{

char a[30],b[30],c[30];
inti,j,n,m;

/I clrscr();

printf(" Enter the string in upper casa’);
scanf("%s",a);
n=strlen(a);

b[0]="D;

b[1]="L";

b[2]="E";

b[3]="",

b[4]='S";

b[5]="T";

b[6]="X";

Dept. of EE, CIT, Gubbi Page n@B3

Computemetworks Laboratory 201718

b[7]=""
j=8;i=0;
while(i<n)
{
if((a[i]=="D'&&ali+1]=="L'&&a[i+2]=="E") || (a[i]=="S'&&a[i+1]=="T'&&a[i+2]==
XY || (a[il=="E'&&a[i+1]=="T'&&a[i+2]=="X"))
{
b[j]="D";
b[j+1]="L";
b[j+2]='E";
J=1+3;
}
blj]=alil;
i++;
j++;
}
bijl=""
b[j+1]="D"
blj+2]="L";
b[j+3]="E";
blj+4]=""
b[j+5]='E";
b[j+6]="T";
b[j+7]="X";
b[j+8]="0";
printf("Frames after stuffingn”);
printf("%s",b);
m=strlen(b);
printf("\nFrames after destuffing:");
i=0,j=0;
while(i<8)
i++;
while(i<m-8)
{
if(b[i]=="D'&&b [i+1]=="L'&&b[i+2]=="E")||(b[i]=='S'&&b[i+1]=="T'&&b[i+2]=
OX'")| | (b[i]=="E"&&b[i +1] =="T" &&b[1 +2] ==
{
i=i+3;
c[i]=bIil;
}
else
c[il=b{i];
j++;
i++;

Dept. of EE, CIT, Gubbi Page n84

Computemetworks Laboratory 201718

}
c[j]="0;
printf("%s",c);
getch();

}

INPUT: Enter the string in upper case:
ETXWITHSTXCANDLE

OUTPUT:
Frames after stuffing:
DLE STX DLEETXWITHDLESTXCANDLEDLE DLE ETX

Frames after destuffing:
ETXWITHSTXCANDLE

Experiment No: 3 Date:
DISTANCE VECTOR ALGORITHM

Aim: C Program for Distance Vector Algorithm to fi nd suitable path for transmission

Dept. of EE, CIT, Gubbi Page n@5

Computemetworks Laboratory 201718

Distance Vector Algorithnis a decentralized routing algorithm that requires that each
router simply inform its neighbors of its routing table. For each network path, the receiving
routers pick the neighbor advertising the lowest cost, then add this entry into its routing table
for re-advertisement. To find the shortest path, Distance Vector Algorithm is based on one of
two basic algorithms: the Bellmdford and the Dijkstra algorithms.

Routers that use this algorithm have to maintain the distance tables (which is a one
dimension anay -- "a vector"), which tell the distances and shortest path to sending packets to
each node in the network. The information in the distance table is always upd by exchanging
information with the neighboring nodes. The number of data in the table ¢guh&t of all
nodes in networks (excluded itself). The columns of table represent the directly attached
neighbors whereas the rows represent all destinations in the network. Each data contains the
path for sending packets to each destination in the nktarmd distance/or time to transmit
on that path (we call this as "cost"). The measurements in this algorithm are the number of
hops, latency, the number of outgoing packets, etc.

The starting assumption for distamgector routing is each node knows thetoof the
link of each of its directly connected neighbors. Next, every node sends a configured message
to its directly connected neighbors containing its own distance table. Now, every node can
learn and up its distance table with cost and next hops lfanodes network. Repeat
exchanging until no more information between the neighbors.

Consider a node A that is interested in routing to destination H via a directly attached
neighbor J. Node A's distance table entry, Dx(Y,Z) is thma siithe cost of theitectone
hop link between A and J, c(A,J), plus neighboring Jtseatly known minimuracost path
(shortest pdt) from itself(J) to H. That i®x(H,J) = c(A,J) + minw{Dj(H,w)} Theminw is
taken over all the J'sThis equation suggests that the form of ghéiorto-neighbor
communication that will take place in the DV algoritareach node must know the cost of
each of its neighbors' minimunost path to each destination. Hence, whenever a node
computes a new minimum cost to some destination, it must inferneighbors of this new

minimum cost.

Dept. of EE, CIT, Gubbi Page n@B6

Computemetworks Laboratory 201718

New estimated
Router delay from J
A B \c D ToA | H K { Line
* Al O 24| (20| |21 8 | A
B|12 36 3 28 20| A
C|25 18 19 36 28| |
. £ G H Dl40| [27] [8] [24 20| H
E|14 Z 30 22 17 |
F |23 20 19 40 30 1
G| 18 31 6 31 18| H
4 A 1 H|17 20 0 19 12| H
. i k 121 [o| [14] [22 10] I
(a) J| 9 11 7 10 0| -
K|l24 22 22 0 6 | K
L |29 33 9 9 15[K
JA JI JH JK SRR
delay delay delay delay New
is is is Is routing
8 10 12 6 table
N - 2 forJ
Vectors received from
J's four neighbors
(b)

Figure (a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

Implementation Algorithm:
1. send my routing table to all my neighbors whenever my link table changes
2. when | get a routing table fromneighbor on port P with link metric M:
a. add L to each of the neighbor's metrics
b. for each entry (D, P', M") in the updated neighbor's table:
i. if do not have an entry for D, add (D, P, M) to my routing table
ii. if I have an entry for D with metric M", add ([P, M) to my routing
table if M' < M"
3. if my routing table has changed, send all the new entries to all my neighbors.

C- LANGUAGE PROGRAM CODE
#include<stdio.h>

#include<stdlib.h>

void rout_table();
int d[10][10],via[10][10];
int i,j,k,1,m,n,g[10][10],tenp[10][10],ch,cost;
int main()
{
system("clear");
printf("enter the value of no. of noday);
scanf("%d",&n);
rout_table();

Dept. of EE, CIT, Gubbi Page n@7

Computemetworks Laboratory

201718

for(i=0;i<n;i++)
for(j=0;j<n;j++)
templ[i][i1=9[illl;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
viafilfj=i
while(1)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(dil[i)
for(k=0;k<n;k++)
if(gilli1+alilkl<glil[k])
{
glilikl=glil+alilIk];
via[i][K]=j;
}
for(i=0;i<n;i++)
{
printf(“table for router %0m" ,i+97);
for(j=0;j<n;j++)

printf("%c:: %d via %tn" ,j+97, g[i][j],via[i][j]*+97);

}
Break;
}
}
}

void rout_table()

{
printf("\nEnter the routing tablé\n");

printf("\t|");
for(i=1;i<=n;i++)
printf("%c\t",i+96);
printf("\n");
for(i=0;i<=n;i++)

printf("\n");

for(i=0;i<n;i++)

{
printf("%c |",i+97);
for(j=0;j<n;j++)

scanf("%d",&g[i][i]);

Dept. of EE, CIT, Gubbi

Page n@8

Computemetworks Laboratory

201718

If(g[i]0]'=999)
d[ijil=1;

}
OUTPUT:

enter the value of no. of nodes
4
Enter the routing table:

la b C d

table for router a
a:Oviaa
b::5viaa
c::lviaa
d::4viaa
table for router b
a:5viab
b::Oviab
c.:5viad
d::2viab
table for router c
a:lviac
b::5viad
c::0viac
d::3vac

table for router d

a:4viad

b::2viad

c:3viad

d::Oviad

do you want to change the cost(1/0)
1

enter the vertices which you want to change the cost
13

enter the cost

2

table for router a

a::Oviaa

b::5viaa

c:2viaa

Dept. of EE, CIT, Gubbi

Page n@9

Computemetworks Laboratory

201718

d:4viaa
table for router b
a:5viab
b::Oviab
c::5viad
d::2viab
table for router c
a:2viac
b:: 5viad
c::0viac
d::3viac
table for router d
a: 4viad
b::2viab
c::3viad
d:: Oviad

do you want to change the cost(1/0)

0

Dept. of EE, CIT, Gubbi

Page n@0

Computemetworks Laboratory 201718

Experiment No: 4 Date:

SHORTEST PATH USING DIJKSTRA ALGORITHM
AIM: Write a C/ C++ program to find the Shortes
THEORY:

Dijkstrads algorithm proDirjelsst vady aldgoti tf h re
identifies the closest nodes from the source node in order of increasing path cost. The
algorithm is iterative. The Dijkstrads al go
points on a network using a graph madeofimodes and edges The algorithm divides the

nodes into two sets : tentative and permanent . It chooses nodes, makes them tentative,

examines them and if they pass the criteria makes them permanent.

ALGORITHM:
Stepl: Declare array path [5] [5], min[5[5], index, t[5];
Step2: Declare and initialize st=1,ed=5

Step 3: Declare variables i, j, stp, p, edp

Step 4: print Aenter the cost
Step 5:i=1

Step 6: Repeat step (7 to 11) until (i<=5)

Step 7: =1

Step 8: repeat step (9 to 10) until (j<=5)

Step 9: Rad ali] [j]

Step 10: increment |

Step 11: increment i

Step 12: print AEnter the patho

Step 13: read p

Step 14: print AEnter possible pathso
Step 15:i=1

Dept. of EE, CIT, Gubbi Page nd1

Computemetworks Laboratory 201718

Step 16: repeat stefl7 to 21) until (i<=p)
Step 17: j=1

Step 18: repeat stefl9 to 20) until (i<B)
Step 19: read path([i][j]

Step 20: increment |

Step 21: increment i

Step 22: j=1

Step 23: repeat step(24 to 34) until(i<=p)
Step 24: t[i]=0

Step 25: stp=st

Step 26: j=1

Step 27: repeat step(26 to 34) until(j<=5)
Step 28: edp=path[i][j+1]

Step 29: t[i]= fi]+a[stp][edp]

Step 30: if (edp==ed) then

Step 31: break;

Step 32: else

Step 33: stp=edp

Step 34: end if

Step 35: min=t[st]

Step 36: index=st

Step 37: repeat step 38 to 41) until (i<=p)
Step 38: min>t[i]

Step 39: min=t[i]

Step 40: index=i

Step 41: endf
Step 42: printd minimum costo min
Step 43: printd minimum cost ptho

Step 44: repeat stef45 to 48) until (i<=5)
Step 45: print path[index]][i]
Step 46: if(path[idex][i]==ed) then
Step 47: break
Step 48: end if
End
Dept. of EE, CIT, Gubbi Page nd2

Computemetworks Laboratory 201718

C- LANGUAGE PROGRAM CODE
#include<stdo.h>

#include<conio.h>
void main()

{

int path[5][5],1, J, min, a[5][5], p, st=1,ed=5,stp,edp,t[5],index;
/I clrscr();

printf("enter the cost matrir™);
for(i=1;i<=5;i++)
for(j=1;j<=5;j++)
scanf("%d",&a[i][j]);
printf("enter the patha");
scanf(%d",&p);

printf("enter possible paths’);
for(i=1;i<=p;i++)
for(j=1;j<=5;j++)
scanf("%d",&path[i][j]);
for(i=1;i<=p;i++)

{
t[i]=0;
stp=st;
for(j=1;j<=5;j++)
{
edp=path[i][j+1];
tli]=t[i]+a[stp][edp];
if(edp==ed)
break;
else
stp=edp;
}
}

min=t[st];index=st;
for(i=1;i<=p;i++)

{
if(min>t[i])
{
min=t[i];
index=i;
}
}

printf("minimum cost %d",min);
printf("\n minimum cost path ");
for(i=1;i<=5;i++)
{
Dept. of EE, CIT, Gubbi Page n43

Computemetworks Laboratory 201718

printf("--> %d",path[index][i]);
if(path[index][i]==ed)
break;

}
getch();

OUTPUT:

inimum cost 8
minimum cost path —> 1—> 4—> §

Dept. of EE, CIT, Gubbi Page nd4

Computemetworks Laboratory 201718

Experiment No: 5 Date:

ERROR DETECTING CODE Using CRC-CCITT (16-bit)
AIM : C Program for ERROR detecting code using GRTTT (16bit).
THEORY :

Whenever digital data is stored ioterfaced, data corruption might occur. Since the
beginning of computer science, developers have been thinking of ways to deal with this type
of problem. For serial data they came up with the solution to attach a parity bit to each sent
byte. This simp detection mechanism works if an odd number of bits in a byte changes, but
an even number of false bits in one byte will not be detected by the parity check. To
overcome this problem developers have searched for mathematical sound mechanisms to
detect muiple false bits. Th&€CRC calculation orcyclic redundancy cheackas the result of
this. Nowadays CRC calculations are used in all types of communications. All packets sent
over a network connection are checked with a CRC. Also each data block on yodiskard
has a CRC value attached to it. Modern computer world cannot do without these CRC
calculations. So let's see why they are so widely used. The answer is simple; they are
powerful, detect many types of errors and are extremely fast to calculate bppevan
dedicated hardware chips are used.

The idea behind CRC calculation is to look at the data as one large binary number.
This number is divided by a certain value and the remainder of the calculation is called the
CRC. Dividing in the CRC calculatioat first looks to cost a lot of computing power, but it
can be performed very quickly if we use a method similar to the one learned at school. We
will as an example calculate the remainder for the charact&mhich is1101101in binary
notatior® by dividing it by 19 or 10011 Please note that 19 is an odd number. This is
necessary as we will see further on. Please refer to your schoolbooks as the binary calculation
method here is not very different from the decimal method you learned when you were
young.It might only look a little bit strange. Also notations differ between countries, but the

method is similar.

1
1 00 11 1 1
|
|
|

1 1 1 0 = 14 = remainder

Dept. of EE, CIT, Gubbi Page nd5

Computemetworks Laboratory 201718

With decimal calculations you can quickly check th@®9 divided by 19 gives a
guotient of5 with 14 as the remainder. But what we also see in the scheme is that every bit
extra to check only costs one binary comparison and in 50% of the cases one binary
subtraction. You can easily increase the number of bits of the test daté $tirexample to
56 bits if we use our example valueainmertd and the result can be calculated with 56
binary comparisons and an average of 28 binary subtractions. This can be implemented in
hardware directly with only very few transistors involved. Also software algnstcan be
very efficient.

All of the CRC formulas you will encounter are simply checksum algorithms based
on module2 binary division where we ignore carry bits and in effect the subtraction will be
equal to anexclusive oroperation. Though some differees exist in the specifics across
different CRC formulas, the basic mathematical process is always the same:

1 The message bits are appended witkro bits; thimugmented messagethe
dividend
T A predeterminea+1-bit binary sequence, called tgenentor polynomial is the
divisor
1 The checksum is thebit remainder that results from the division operation
Table 1 lists some of the most commonly used generator polynomials-fand 82bit
CRCs. Remember that the width of the divisor is alwayshitngider than the remainder.
So, f or e x amp-bitggenergtar pofymbmial e/henewer alli checksum is

required.
CRC-CCITT CRC-16 CRC-32
Checksum
16 bits 16 bits 32 bits
Width
Generator
Bol ol 1000100000010000] 11000000000000101 1000M100110000010001110110110111
olynomial

Table 1. International Standard CRC Polynomials
Error detection with CRC
Consider a message represented by the polynomial M(x)
Consider generating polynomiab(x)
This is used to generate a CRC = C(x) to be appendedxo M(
Note this G(x) is prime.
Steps:1. Multiply M(x) by highest power in G(x). i.e. Add So much zeros to M(x).

Dept. of EE, CIT, Gubbi Page nd6

Computemetworks Laboratory 201718

2. Divide the result by G(x). The remainder = C(x).
Special case: This won't work if bitstring =all zeros. We don't allow such an
M(x).But M(x) bitstring = 1 will work, for example. Can divide 1101 into 1000.
3. If: x divy gives remainder c
that means: x =ny + cklence (xc) = ny
(x-c) div y gives remainder 0O
Here (%c) = (x+c)
Hence (x+c) div y gives remainder O
4. Transmit: T(x) = M(x) + CX)

5. Receiver end: Receive T(x). Divide by G(x), should have remainder 0.

Note if G(x) has order n- highest power is X,

then G(x) will cover (n+1) bits

and theremainderwill cover n bits. i.e. Add n bits (Zeros) to message.

Some CRC polynomials thatare actually used

Some CRC polynomials

1 CRGCS:

XB+x2Hx+1
o Used in: 802.16 (along with erroorrection).
CRCCCITT:
X16+X12+X5+1
o Usedin: HDLC, SDLC, PPP default
IBM-CRGC16 (ANSI):
X16+X15+X2+1
802.3:
X32+X26+X23+X22 +X16+X12+X11+X10 +X8+X7+X5+X4+X2+X+1
o Used in: Ethernet, PPP rootion

C- LANGUAGE PROGRAM CODE

#include<stdio.h>
int a[100],b[100],i,j,len,k,count=0;

/IGenerator Polynomial:g(x)=x"16+x"12+x"5+1
int gp[]={1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,};

int main()

{

void div();

system("clear");

printf("\nEnter the length of Data Frame :");
scanf("%d",&len);

printf("\nEnter the Message :");
for(i=0;i<len;i++)

scanf("%d",&ali]);

Dept. of EE, CIT, Gubbi Page nd7

Computemetworks Laboratory 201718

//Append r(16) degree Zeros to Msg bits
for(i=0;i<16;i++)

a[len++]=0;
[IXr.M(x) (ie. Msg+16 Zeros)
for(i=0;i<len;i++)

bli]=alil;
/INo of times to be divided ieMsg Length
k=len-16;
div();
for(i=0;i<len;i++)

bli]=b[i]*a[i]; //MOD 2 Substraction
printf("\nData to be transmitted : ");
for(i=0;i<len;i++)

printf("%2d",b[i]);
printf("\n\nEnterthe Reveived Data : ");
for(i=0;i<len;i++)

scanf("%d",&ali]);

div();
for(i=0;i<len;i++)
if(a[i]'=0)
{
printf("\nERROR in Recived Data");
return O;
}
printf("\nData Recived is ERROR FREE");
}
void div()
{
for(i=0;i<k;i++)
{
el1==gp(o)
for(j=i;j<17+i;j++)
a[j]=a[j]*gp[count++];
}
count=0;
}
}
Output:

Enter the length of Data Frame :4

Enter the Message :1011

Data to be transmitted: 10111011000101101011
Enter the Reveived Data:101110000001101011
ERROR in Recived Data

Remender is : 0000000100000000

kkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkhkkhkkkkhkkkkhkkhkkhkkhkkhkkkkkkkx

Dept. of EE, CIT, Gubbi Page n48

Computemetworks Laboratory 201718

Experiment No: 6 Date:
STOP AND WAIT PROTOCOL

AIM : Implementation of Stop and &it protocol using C.

THEORY :

If data frames arrive at the receiver site faster than they can be process$eimése
must be stored until their us&he protocol we discuss now is called the SaogWait
Protocol because theender sends one frame, stops until it receives corfom&om the
receiver (okay to go ahead), and then sends the next.frame

We still have unidirectional communication for data frames, but auxiliary ACK

frames(simple tokens of acknowledgment) travel from the other direc8onthat we add

flow control.
Sender Eeceiver
Deliver
Network Cret data data Network
Y I
Data lmlk: Data link
4 I) I
r
Physical RECLh’E Send REC\L]VE Send Physical
- frame frame frame frame -
Data frame
I — |
——— O ACK frame
. .| Request from
Event: network layer

forever * Repeat forever
——= =

I

: et +

Event: | Totification from Fven. | Notification from
“ | physical layer) ‘1 physical tayer. -

C- LANGUAGE PROGRAM CODE

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()

{

int i,j,noframes,x,x1=10,x2;
noframes=10;
i=1; j=1;
printf("number of frames is %d ",noframes);

getch();
while(noframes>0)

{

printf(" \nsending frames is %d",i);
x=rand()%10;

Dept. of EE, CIT, Gubbi Page n49

Computemetworks Laboratory 201718
if(x%10==0)
{
for(x2=1;x2<2;x2++)
{
printf(" \n waiting for %d secondan”,x2);
sleep(x2);
}
printf(" \n sending frames %dn",i);
x=rand()%10;
}
printf(" \n ack for frame %d\n",j);
noframes=moframes-1,
i++;
j++;
}
printf(" \n end of stop and wait protocadin™);
number of fra
Dept. of EE, CIT, Gubbi Page n®0

Computemetworks Laboratory 201718

Experiment No: 7 Date:
SLIDING WINDOW PROTPCOL

AIM: Implementation of Sliding Window Protocol using C.
THEORY :

It allows multiple frames to be in tremit as compared to stop and wait protocol. In
this the eceiver has buffeof length W. Transmitter can send up to W frames without ACK
Each frame is numbereaccording to modular arithmetidCK includes number of next

frame expectedsequence numbeobnded by size of field (k)

Dept. of EE, CIT, Gubbi Page nd1

