

Channabasaveshwara Institute of Technology
(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

(NAAC Accredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572216. Karnataka.

Department of Information Science & Engineering

Full Stack Development - 21CS62

Lab Manual

6th Semester

Prepared By:

Mr. Praveen Kumar K C

Assistant Professor

Dept. of ISE

CIT, Gubbi

FULLSTACK DEVELOPMENT
Course Code 21CS62 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 T + 20 P Total Marks 100
Credits 04 Exam Hours 03

Course Learning Objectives:
CLO 1.Explain the use of learning full stack web development.

CLO 2.Make use of rapid application development in the design of responsive web pages.

CLO 3.Illustrate Models, Views and Templates with their connectivity in Django for full stack web

development.

CLO 4.Demonstrate the use of state management and admin interfaces automation in Django.

CLO 5.Design and implement Django apps containing dynamic pages with SQL databases.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course

outcomes.

1. Lecturer method (L) does not mean only traditional lecture method, but different type of

teaching methods may be adopted to develop the outcomes.

2. Show Video/animation films to explain functioning of various concepts.

3. Encourage collaborative (Group Learning) Learning in the class.

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical

thinking.

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop

thinking skills such as the ability to evaluate, generalize, and analyze information rather than

simply recall it.

6. Topics will be introduced in a multiple representation.

7. Show the different ways to solve the same problem and encourage the students to come up

with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps

improve the students' understanding.

Module-1: MVC based Web Designing

Web framework, MVC Design Pattern, Django Evolution, Views, Mapping URL to Views, Working of

Django URL Confs and Loose Coupling, Errors in Django, Wild Card patterns in URLS.

Textbook 1: Chapter 1 and Chapter 3

Laboratory Component:

1. Installation of Python, Django and Visual Studio code editors can be demonstrated.

2. Creation of virtual environment, Django project and App should be demonstrated

3. Develop a Django app that displays current date and time in server

4. Develop a Django app that displays date and time four hours ahead and four hours before as

an offset of current date and time in server.

Teaching-Learning Process 1. Demonstration using Visual Studio Code

2. PPT/Prezi Presentation for Architecture and Design

Patterns

3. Live coding of all concepts with simple examples

Module-2: Django Templates and Models

Template System Basics, Using Django Template System, Basic Template Tags and Filters, MVT

Development Pattern, Template Loading, Template Inheritance, MVT Development Pattern.

Configuring Databases, Defining and Implementing Models, Basic Data Access, Adding Model String

Representations, Inserting/Updating data, Selecting and deleting objects, Schema Evolution
Textbook 1: Chapter 4 and Chapter 5

Laboratory Component:

1. Develop a simple Django app that displays an unordered list of fruits and ordered list of

selected students for an event

2. Develop a layout.html with a suitable header (containing navigation menu) and footer with

copyright and developer information. Inherit this layout.html and create 3 additional pages:

contact us, About Us and Home page of any website.

3. Develop a Django app that performs student registration to a course. It should also display list

of students registered for any selected course. Create students and course as models with

enrolment as ManyToMany field.

Teaching-Learning Process 1. Demonstration using Visual Studio Code

2. PPT/Prezi Presentation for Architecture and Design

Patterns

3. Live coding of all concepts with simple examples

4. Case Study: Apply concepts learnt for an Online Ticket

Booking System

Module-3: Django Admin Interfaces and Model Forms

Activating Admin Interfaces, Using Admin Interfaces, Customizing Admin Interfaces, Reasons to use

Admin Interfaces.

Form Processing, Creating Feedback forms, Form submissions, custom validation, creating Model Forms,

URLConf Ticks, Including Other URLConfs.

Textbook 1: Chapters 6, 7 and 8

Laboratory Component:

1. For student and course models created in Lab experiment for Module2, register admin

interfaces, perform migrations and illustrate data entry through admin forms.

2. Develop a Model form for student that contains his topic chosen for project, languages used and

duration with a model called project.

Teaching-Learning Process 1. Demonstration using Visual Studio Code

2. PPT/Prezi Presentation for Architecture and Design

Patterns

3. Live coding of all concepts with simple examples

Module-4: Generic Views and Django State Persistence

Using Generic Views, Generic Views of Objects, Extending Generic Views of objects, Extending Generic

Views.

MIME Types, Generating Non-HTML contents like CSV and PDF, Syndication Feed Framework, Sitemap

framework, Cookies, Sessions, Users and Authentication.
Textbook 1: Chapters 9, 11 and 12

Laboratory Component:

1. For students enrolment developed in Module 2, create a generic class view which displays list

of students and detailview that displays student details for any selected student in the list.

2. Develop example Django app that performs CSV and PDF generation for any models created in

previous laboratory component.

Teaching-Learning Process 1. Demonstration using Visual Studio Code

2. PPT/Prezi Presentation for Architecture and Design

Patterns

 3. Live coding of all concepts with simple examples

4. Project Work: Implement all concepts learnt for Student

Admission Management.

Module-5: jQuery and AJAX Integration in Django

Ajax Solution, Java Script, XHTMLHttpRequest and Response, HTML, CSS, JSON, iFrames, Settings of Java

Script in Django, jQuery and Basic AJAX, jQuery AJAX Facilities, Using jQuery UI Autocomplete in Django

Textbook 2: Chapters 1, 2 and 7.

Laboratory Component:

1. Develop a registration page for student enrolment as done in Module 2 but without page refresh

using AJAX.

2. Develop a search application in Django using AJAX that displays courses enrolled by a student

being searched.

Teaching-Learning Process 1. Demonstration using Visual Studio Code

2. PPT/Prezi Presentation for Architecture and Design

Patterns

3. Live coding of all concepts with simple examples

4. Case Study: Apply the use of AJAX and jQuery for

development of EMI calculator.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO 1. Understand the working of MVT based full stack web development with Django.

CO 2. Designing of Models and Forms for rapid development of web pages.

CO 3. Analyze the role of Template Inheritance and Generic views for developing full stack web

applications.

CO 4. Apply the Django framework libraries to render nonHTML contents like CSV and PDF.

CO 5. Perform jQuery based AJAX integration to Django Apps to build responsive full stack web

applications,

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be

deemed to have satisfied the academic requirements and earned the credits allotted to each subject/

course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination

(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal

Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

1. First test at the end of 5th week of the semester

2. Second test at the end of the 10th week of the semester

3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

4. First assignment at the end of 4th week of the semester

5. Second assignment at the end of 9th week of the semester

Practical Sessions need to be assessed by appropriate rubrics and viva-voce method. This will contribute

to 20 marks.

 Rubrics for each Experiment taken average for all Lab components – 15 Marks.

 Viva-Voce– 5 Marks (more emphasized on demonstration topics)

The sum of three tests, two assignments, and practical sessions will be out of 100 marks and will be

scaled down to 50 marks

(to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the

methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom’s

taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question

papers for the subject (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored

shall be proportionally reduced to 50 marks

2. There will be 2 questions from each module. Each of the two questions under a module (with a

maximum of 3 sub-questions), should have a mix of topics under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

1. Adrian Holovaty, Jacob Kaplan Moss, The Definitive Guide to Django: Web Development Done

Right, Second Edition, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG

Publishers, 2009
2. Jonathan Hayward, Django Java Script Integration: AJAX and jQuery, First Edition, Pack

Publishing, 2011

Reference Books

1. Aidas Bendroraitis, Jake Kronika, Django 3 Web Development Cookbook, Fourth Edition, Packt

Publishing, 2020

2. William Vincent, Django for Beginners: Build websites with Python and Django, First Edition,

Amazon Digital Services, 2018

3. Antonio Mele, Django3 by Example, 3rd Edition, Pack Publishers, 2020

4. Arun Ravindran, Django Design Patterns and Best Practices, 2nd Edition, Pack Publishers, 2020.

5. Julia Elman, Mark Lavin, Light weight Django, David A. Bell, 1st Edition, Oreily Publications, 2014

Weblinks and Video Lectures (e-Resources):

1. MVT architecture with Django: https://freevideolectures.com/course/3700/django-tutorials

2. Using Python in Django: https://www.youtube.com/watch?v=2BqoLiMT3Ao

3. Model Forms with Django: https://www.youtube.com/watch?v=gMM1rtTwKxE

4. Real time Interactions in Django: https://www.youtube.com/watch?v=3gHmfoeZ45k

5. AJAX with Django for beginners: https://www.youtube.com/watch?v=3VaKNyjlxAU

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

1. Real world problem solving - applying the Django framework concepts and its integration with

AJAX to develop any shopping website with admin and user dashboards.

https://freevideolectures.com/course/3700/django-tutorials
https://www.youtube.com/watch?v=2BqoLiMT3Ao
https://www.youtube.com/watch?v=gMM1rtTwKxE
https://www.youtube.com/watch?v=3gHmfoeZ45k
https://www.youtube.com/watch?v=3VaKNyjlxAU

Short Preamble on Full Stack Web Development:

Website development is a way to make people aware of the services and/or products they are offering,
understand why the products are relevant and even necessary for them to buy or use, and highlight the striking

qualities that set it apart from competitors. Other than commercial reasons, a website is also needed for quick

and dynamic information delivery for any domain. Development of a well-designed, informative, responsive
and dynamic website is need of the hour from any computer science and related engineering graduates. Hence,

they need to be augmented with skills to use technology and framework which can help them to develop

elegant websites. Full Stack developers are in need by many companies, who knows and can develop all pieces

of web application (Front End, Back End and business logic). MVT based development with Django is the
cutting-edge framework for Full Stack Web Development. Python has become an easier language to use for

many applications. Django based framework in Python helps a web developer to utilize framework and

develop rapidly responsive and secure web applications.

FULLSTACK DEVELOPMENT

 P a g e 1 | 60

CONTENTS

MODULE SUB - COMPONENT PAGE NO.

Laboratory Component 1 1.1 2

1.2 3

1.3 8

1.4 8

Laboratory Component 2 2.1 13

2.2 16

2.3 22

Laboratory Component 3 3.1 36

3.2 39

Laboratory Component 4 4.1 45

4.2 50

Laboratory Component 5 5.1 53

5.2 57

FULLSTACK DEVELOPMENT

 P a g e 2 | 60

Laboratory Component - 1:

1. Installation of Python, Django and Visual Studio code editors can be demonstrated.

2. Creation of virtual environment, Django project and App should be demonstrated

3. Develop a Django app that displays current date and time in server

4. Develop a Django app that displays date and time four hours ahead and four hours before as an offset of

current date and time in server.

1.1 Installation

a) Python:

1. Download the latest Python installer from https://www.python.org/downloads/. (Python 3.11.5

preferred).

2. Run the installer and follow the on-screen instructions. Ensure "Add Python to PATH" is checked for

easy access from the command line.

3. Open a command prompt or terminal and type python --version to verify installation.

http://www.python.org/downloads/
http://www.python.org/downloads/
http://www.python.org/downloads/

FULLSTACK DEVELOPMENT

 P a g e 3 | 60

b) Visual Studio Code:

1. Download and install Visual Studio Code from https://code.visualstudio.com/download.

2. Install the Python extension for code completion and debugging within VS Code.

1.2 Virtual Environment and Project Setup:

1. On your file system, create a folder, such as django_lab.

2. In that folder, use the following command (as appropriate to your computer) to create a virtual

environment named myenv based on your current interpreter.

3. Open the project folder in VS Code by running code ., or by running VS Code and using the File >

Open Folder command.

Linux
sudo apt-get install python3-venv
python3 -m venv myenv
source myenv/bin/activate

If needed

macOS
python3 -m venv myenv
source myenv/bin/activate

Windows
py -3 -m venv myenv
myenv\scripts\activate

FULLSTACK DEVELOPMENT

 P a g e 4 | 60

4. In VS Code, open the Command Palette (View > Command Palette or (Ctrl+Shift+P)). Then select the

Python: Select Interpreter command:

5. The command presents a list of available interpreters that VS Code can locate automatically (your list

will vary; if you don't see the desired interpreter, see Configuring Python environments). From the list,

select the virtual environment in your project folder that starts with myenv:

FULLSTACK DEVELOPMENT

 P a g e 5 | 60

6. Run Terminal: Create New Terminal (Ctrl+Shift+`) from the Command Palette, which creates a

terminal and automatically activates the virtual environment by running its activation script.

Note: On Windows, if your default terminal type is PowerShell, you may see an error that it cannot run

activate.ps1 because running scripts is disabled on the system. The error provides a link for information

on how to allow scripts. Otherwise, use Terminal: Select Default Profile to set "Command Prompt" or

"Git Bash" as your default instead.

7. Update pip in the virtual environment by running the following command in the VS Code Terminal:

python -m pip install --upgrade pip

8. Install Django in the virtual environment by running the following command in the VS Code Terminal:

python -m pip install django

You now have a self-contained environment ready for writing Django code. VS Code activates the

environment automatically when you use Terminal: Create New Terminal (Ctrl+Shift+`). If you open a

separate command prompt or terminal, activate the environment by running source myenv/bin/activate

(Linux/macOS) or myenv\Scripts\Activate.ps1 (Windows). You know the environment is activated when

the command prompt shows (myenv) at the beginning.

FULLSTACK DEVELOPMENT

 P a g e 6 | 60

Create and run a minimal Django app

In Django terminology, a "Django project" is composed of several site-level configuration files, along with one

or more "apps" that you deploy to a web host to create a full web application. A Django project can contain

multiple apps, each of which typically has an independent function in the project, and the same app can be in

multiple Django projects. An app, for its part, is just a Python package that follows certain conventions that

Django expects.

To create a minimal Django app, then, it's necessary to first create the Django project to serve as the container

for the app, then create the app itself. For both purposes, you use the Django administrative utility, django-

admin, which is installed when you install the Django package.

Create the Django project

1. In the VS Code Terminal where your virtual environment is activated, run the following command:

This startproject command assumes (by use of . at the end) that the current folder is your project folder,

and creates the following within it:

o manage.py: The Django command-line administrative utility for the project. You run
administrative commands for the project using python manage.py <command> [options].

o A subfolder named myproject, which contains the following files:

 init .py: an empty file that tells Python that this folder is a Python package.

 asgi.py: an entry point for ASGI-compatible web servers to serve your project. You

typically leave this file as-is as it provides the hooks for production web servers.

 settings.py: contains settings for Django project, which you modify in the course of

developing a web app.

 urls.py: contains a table of contents for the Django project, which you also modify in the

course of development.

 wsgi.py: an entry point for WSGI-compatible web servers to serve your project. You

typically leave this file as-is as it provides the hooks for production web servers.

2. Create an empty development database by running the following command:

When you run the server the first time, it creates a default SQLite database in the file db.sqlite3 that is

intended for development purposes, but can be used in production for low-volume web apps.

To verify the Django project, make sure your virtual environment is activated, then start Django's

development server using the command python manage.py runserver. The server runs on the default port

8000, and you see output like the following output in the terminal window:

django-admin startproject myproject .

python manage.py migrate

https://asgi.readthedocs.io/en/latest/

FULLSTACK DEVELOPMENT

 P a g e 7 | 60

Django's built-in web server is intended only for local development purposes. When you deploy to a

web host, however, Django uses the host's web server instead. The wsgi.py and asgi.py modules in the

Django project take care of hooking into the production servers.

If you want to use a different port than the default 8000, specify the port number on the command line,

such as python manage.py runserver 5000.

3. Ctrl+click the http://127.0.0.1:8000/ URL in the terminal output window to open your default browser to

that address. If Django is installed correctly and the project is valid, you see the default page shown

below. The VS Code terminal output window also shows the server log.

4. When you're done, close the browser window and stop the server in VS Code using Ctrl+C as indicated

in the terminal output window.

FULLSTACK DEVELOPMENT

 P a g e 8 | 60

1.3 - 1.4 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your project folder (where manage.py resides):

The command creates a folder called myapp that contains a number of code files and one subfolder. Of

these, you frequently work with views.py (that contains the functions that define pages in your web app)

and models.py (that contains classes defining your data objects). The migrations folder is used by

Django's administrative utility to manage database versions as discussed later in this tutorial. There are

also the files apps.py (app configuration), admin.py (for creating an administrative interface),

and tests.py (for creating tests), which are not covered here.

2. Modify myapp/views.py to match the following code

#views.py

import pytz

from datetime import datetime, timedelta

from django.shortcuts import render

#Using pytz library

def current_datetime(request):

Get the standard UTC time

utc = pytz.utc

Get the time zone of the specified location (IST - Indian Standard Time)

ist = pytz.timezone('Asia/Kolkata')

Get the current time in UTC and IST

datetime_utc = datetime.now(utc)

datetime_ist = datetime.now(ist)

Format the date and time

formatted_utc = datetime_utc.strftime('%Y-%m-%d %H:%M:%S %Z %z')

formatted_ist = datetime_ist.strftime('%Y-%m-%d %H:%M:%S %Z %z')

Pass the formatted date and time to the template

context = {

'utc_time': formatted_utc,

'ist_time': formatted_ist

}

Render the template with the context

return render(request, 'myapp/current_datetime.html', context)

python manage.py startapp myapp

FULLSTACK DEVELOPMENT

 P a g e 9 | 60

#Using pytz library

def date_time_offset(request):

Get the current date and time on the server

current_datetime = datetime.now()

Calculate the date and time four hours ahead and four hours before

datetime_ahead = current_datetime + timedelta(hours=4)

datetime_before = current_datetime - timedelta(hours=4)

Format the date and time strings

formatted_current_datetime = current_datetime.strftime('%Y-%m-%d %H:%M:%S')

formatted_datetime_ahead = datetime_ahead.strftime('%Y-%m-%d %H:%M:%S')

formatted_datetime_before = datetime_before.strftime('%Y-%m-%d %H:%M:%S')

Pass the formatted date and time strings to the template

context = {

'current_datetime': formatted_current_datetime,

'datetime_ahead': formatted_datetime_ahead,

'datetime_before': formatted_datetime_before

}

Render the template with the context

return render(request, 'myapp/date_time_offset.html', context)

3. You need to install the pytz library.

4. Create a file, myapp/urls.py, with the contents below. The urls.py file is where you specify patterns to

route different URLs to their appropriate views.

#urls.py (myapp/urls.py)

from django.urls import path

from myapp import views

urlpatterns = [

path("current_datetime/", views.current_datetime, name="current_datetime"),

path("date_time_offset/", views.date_time_offset, name="date_time_offset"),

]

pip install pytz

FULLSTACK DEVELOPMENT

Department of Computer Science and Engineering, Cambridge Institute of Technology P a g e 10 | 60

5. The myproject folder also contains a urls.py file, which is where URL routing is actually handled. Open

myproject/urls.py and modify it to match the following code (you can retain the instructive comments if

you like). This code pulls in the app's myapp/urls.py using django.urls.include, which keeps the app's

routes contained within the app. This separation is helpful when a project contains multiple apps.

#urls.py (myproject/urls.py)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path("", include("myapp.urls")),

path("admin/", admin.site.urls),

]

6. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘myapp’,

7. Inside the myapp folder, create a folder named templates, and then another subfolder named myapp to

match the app name (this two-tiered folder structure is typical Django convention).

In the templates/myapp folder, create a file named current_datetime.html with the contents below.

#current_datetime.html (myapp/templates/myapp/current_datetime.html)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Current Time</title>

</head>

<body>

<h1>Current Time</h1>

<p>UTC Time: {{ utc_time }}</p>

<p>Indian Standard Time (IST): {{ ist_time }}</p>

</body>

</html>

FULLSTACK DEVELOPMENT

In the templates/myapp folder, create a file named date_time_offset.html with the contents below.

#date_time_offset.html (myapp/templates/myapp/ date_time_offset.html)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Date and Time Offset</title>

</head>

<body>

<h1>Date and Time Offset</h1>

<p>Current Date and Time: {{ current_datetime }}</p>

<p>Date and Time Four Hours Ahead: {{ datetime_ahead }}</p>

<p>Date and Time Four Hours Before: {{ datetime_before }}</p>

</body>

</html>

8. Save all modified files.

9. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

10. In the url box of the browse, navigate to http://127.0.0.1:8000/current_datetime to view the current

date time. Similarly, navigate to http://127.0.0.1:8000/date_time_offset to view the offset time.

FULLSTACK DEVELOPMENT

OUTPUT:

FULLSTACK DEVELOPMENT

Laboratory Component - 2:

1. Develop a simple Django app that displays an unordered list of fruits and ordered list of

selected students for an event

2. Develop a layout.html with a suitable header (containing navigation menu) and footer with

copyright and developer information. Inherit this layout.html and create 3 additional pages:

contact us, About Us and Home page of any website.

3. Develop a Django app that performs student registration to a course. It should also display list

of students registered for any selected course. Create students and course as models with

enrolment as ManyToMany field.

2.1 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

2. Modify fruits_and_students/views.py to match the following code.

#views.py

from django.shortcuts import render

def fruits_and_students(request):

print(request.build_absolute_uri())

fruits = ['Apple', 'Banana', 'Orange', 'Grapes']

students = ['Alice', 'Bob', 'Charlie', 'David']

return render(request, 'fruits_and_students/fruits_and_students.html', {'fruits': fruits, 'students':

students})

3. Create a file, fruits_and_students/urls.py, with the contents below. The urls.py file is where you specify

patterns to route different URLs to their appropriate views.

#urls.py (fruits_and_students/urls.py)

from django.urls import path

from .views import fruits_and_students

urlpatterns = [

path('', fruits_and_students, name='fruits_and_students'),

]

python manage.py startapp fruits_and_students

FULLSTACK DEVELOPMENT

4. The myproject folder also contains a urls.py file, which is where URL routing is actually handled. Keep

in mind the myproject/urls.py will be used to handle all of the laboratory component apps’ that will be

built. Just add the path url routing line of code to the urlpatterns list every time in the already existing

code.

#urls.py (myproject/urls.py)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path("", include("myapp.urls")),

path("admin/", admin.site.urls),

path('fruits_and_students/', include('fruits_and_students.urls')),

]

5. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘fruits_and_students’,

6. Inside the fruits_and_students folder, create a folder named templates, and then another subfolder named

fruits_and_students to match the app name (this two-tiered folder structure is typical Django

convention).

In the templates/fruits_and_students folder, create a file named fruits_and_students.html with the

contents below.

#fruits_and_students.html (fruits_and_students/templates/fruits_and_students/

fruits_and_students.html)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Fruits and Students</title>

</head>

<body>

<h1>Fruits</h1>

{% for fruit in fruits %}

FULLSTACK DEVELOPMENT

{{ fruit }}

{% endfor %}

<h1>Selected Students</h1>

{% for student in students %}

{{ student }}

{% endfor %}

</body>

</html>

7. Save all modified files.

8. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

9. In the url box of the browse, navigate to http://127.0.0.1:8000/fruits_and_students to view the output.

OUTPUT:

FULLSTACK DEVELOPMENT

2.2 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

2. Modify website_pages/views.py to match the following code.

#views.py

from django.shortcuts import render

def home(request):

return render(request, 'website_pages/home.html')

def about_us(request):

return render(request, 'website_pages/about_us.html')

def contact_us(request):

return render(request, 'website_pages/contact_us.html')

3. Create a file, website_pages/urls.py, with the contents below. The urls.py file is where you specify

patterns to route different URLs to their appropriate views.

#urls.py (website_pages /urls.py)

from django.urls import path

from website_pages import views

urlpatterns = [

path('home/', views.home, name='home'),

path('about_us/', views.about_us, name='about_us'),

path('contact_us/', views.contact_us, name='contact_us'),

]

4. The myproject folder also contains a urls.py file, which is where URL routing is actually handled.

#urls.py (myproject/urls.py)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path("", include("myapp.urls")),

path("admin/", admin.site.urls),

path('fruits_and_students/', include('fruits_and_students.urls')),

path('', include('website_pages.urls')),

]

python manage.py startapp website_pages

FULLSTACK DEVELOPMENT

5. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘website_pages’,

6. Inside the website_pages folder, create a folder named templates. Inside the templates folder, create a

file named layout.html.

#templates/layout.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>{% block title %}My Website{% endblock %}</title>

<style>

body {

font-family: Arial, sans-serif;

margin: 0;

padding: 0;

}

header {

background-color: #333;

color: #fff;

padding: 10px;

}

nav ul {

list-style-type: none;

padding: 0;

}

nav ul li {

display: inline;

margin-right: 20px;

}

nav ul li a {

text-decoration: none;

color: #fff;

}

main {

padding: 20px;

}

FULLSTACK DEVELOPMENT

footer {

background-color: #333;

color: #fff;

text-align: center;

padding: 10px;

position: fixed;

bottom: 0;

width: 100%;

}

</style>

</head>

<body>

<header>

<nav>

Home

About Us

Contact Us

</nav>

</header>

<main>

{% block content %}

{% endblock %}

</main>

<footer>

<p>© 2024 My Website. All rights reserved. </p>

<p>Developed by CIT</p>

</footer>

</body>

</html>

7. Inside the templates folder, create another subfolder named website_pages to match the app name (this

two-tiered folder structure is typical Django convention).

In the templates/website_pages folder, create files named home.html, about_us.html, and

contact_us.html with the contents below.

FULLSTACK DEVELOPMENT

#home.html (website_pages/templates/website_pages/home.html)

{% extends 'layout.html' %}

{% block title %}Home{% endblock %}

{% block content %}

<h1>Welcome to Cambridge Institute of Technology</h1>

<p>Empowering students with a blend of knowledge and innovation.</p>

<p>Nestled in the bustling city of Bengaluru, our campus is a hub of academic excellence and

cutting-edge research.</p>

<h2>Discover Your Potential</h2>

Undergraduate Programs: Dive into our diverse range of engineering

courses designed to fuel your passion and drive innovation.

Postgraduate Programs: Advance your expertise with our specialized

master's programs and embrace leadership in technology.

<p>Join our vibrant community where ideas flourish and inventions come to life in our state-of-the-

art labs and research centers.</p>

<p>Benefit from our strong industry ties and placement programs that open doors to exciting career

opportunities.</p>

{% endblock %}

#about_us.html (website_pages/templates/website_pages/about_us.html)

{% extends 'layout.html' %}

{% block title %}About Us{% endblock %}

{% block content %}

<h1>Our Legacy</h1>

<p>Founded on the principles of quality education and societal contribution, we've been at the

forefront of technological education for over four decades.</p>

<h1>Vision and Mission</h1>

<p>Our vision is to be a beacon of knowledge that lights the way for aspiring minds, and our mission

is to nurture innovative thinkers who will shape the future of technology.</p>

<h1>Campus Life</h1>

<p>Experience a dynamic campus life enriched with cultural activities, technical clubs, and

community service initiatives that foster holistic development.</p>

{% endblock %}

FULLSTACK DEVELOPMENT

P a g e 20 | 60

#contact_us.html (website_pages/templates/website_pages/contact_us.html)

{% extends 'layout.html' %}

{% block title %}Contact Us{% endblock %}

{% block content %}

<h1>Get in Touch</h1>

<p>For admissions and inquiries, reach out to us at:</p>

Email: admissions@cambridge.edu.in

Phone: +91-9731998888

<h1>Visit Our Campus</h1>

<p>Cambridge Institute of Technology - Main Campus</p>

<p>KR Puram, Bengaluru - 560036</p>

<p>We welcome you to be a part of our thriving community that's dedicated to creating a better

tomorrow through technology and innovation.</p>

{% endblock %}

8. Save all modified files.

9. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

10. In the url box of the browse, navigate to http://127.0.0.1:8000/home to view the output. Similarly, you

can navigate through by clicking on the navigation menu. Also check out

http://127.0.0.1:8000/about_us and http://127.0.0.1:8000/contact_us

OUTPUT:

mailto:admissions@cambridge.edu.in

FULLSTACK DEVELOPMENT

P a g e 21 | 60

FULLSTACK DEVELOPMENT

P a g e 22 | 60

2.3 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

2. Modify course_registration/views.py to match the following code.

#views.py

from .forms import StudentForm, CourseForm

from .models import Student, Course

from django.shortcuts import render, redirect, get_object_or_404

def add_student(request):

if request.method == 'POST':

form = StudentForm(request.POST)

if form.is_valid():

form.save()

Redirect to a view that lists all students

return redirect('student_list')

else:

form = StudentForm()

return render(request, 'course_registration/add_student.html', {'form': form})

def add_course(request):

if request.method == 'POST':

form = CourseForm(request.POST)

if form.is_valid():

form.save()

return redirect('course_registration')

else:

form = CourseForm()

return render(request, 'course_registration/add_course.html', {'form': form})

def register_student(request):

if request.method == 'POST':

student_name = request.POST.get('student_name')

course_id = request.POST.get('course_id')

Validate that both student_name and course_id are provided

if not student_name or not course_id:

python manage.py startapp course_registration

FULLSTACK DEVELOPMENT

P a g e 23 | 60

return render(request, 'course_registration/register_student.html', {'courses': Course.objects.all(),

'error_message': 'Please provide both student name and select a course.'})

try:

Retrieve the course based on course_id or return 404 if not found

course = get_object_or_404(Course, pk=course_id)

Check if the student already exists in the database

student = Student.objects.filter(name=student_name).first()

if not student:

If the student does not exist, return an error message

return render(request, 'course_registration/register_student.html', {'courses':

Course.objects.all(), 'error_message': 'Student does not exist in the database.'})

Add the student to the course

course.students.add(student)

return redirect('course_registration')

except Course.DoesNotExist:

return render(request, 'course_registration/register_student.html', {'courses': Course.objects.all(),

'error_message': 'Invalid course ID. Please select a valid course.'})

If not a POST request, render the registration form with all courses

return render(request, 'course_registration/register_student.html', {'courses': Course.objects.all()})

def course_registration(request):

courses = Course.objects.all()

return render(request, 'course_registration/course_registration.html', {'courses': courses})

def students_list(request, course_id):

Retrieve the course based on course_id or return 404 if not found

course = get_object_or_404(Course, course_id=course_id)

Retrieve the students associated with the course

students = course.students.all()

return render(request, 'course_registration/students_list.html', {'course': course, 'students': students})

3. Create a file, course_registration/urls.py, with the contents below. The urls.py file is where you specify

patterns to route different URLs to their appropriate views.

#urls.py (course_registration/urls.py)

from django.urls import path

from . import views

urlpatterns = [

path('add_student/', views.add_student, name='add_student'),

path('add_course/', views.add_course, name='add_course'),

FULLSTACK DEVELOPMENT

P a g e 24 | 60

path('register/', views.register_student, name='register_student'),

path('courses/', views.course_registration, name='course_registration'),

path('students_list/<int:course_id>/',

views.students_list, name='students_list'),

]

4. The myproject folder also contains a urls.py file, which is where URL routing is actually handled.

#urls.py (myproject/urls.py)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path("", include("myapp.urls")),

path("admin/", admin.site.urls),

path('fruits_and_students/', include('fruits_and_students.urls')),

path('', include('website_pages.urls')),

path('registration/', include('course_registration.urls')),

]

5. Modify course_registration/models.py to match the following code.

#models.py

from django.db import models

class Student(models.Model):

name = models.CharField(max_length=100,unique=True)

date_of_birth = models.DateField(

default='1900-01-01', blank=False, null=False) # Set a default date

email = models.EmailField(

default='example@example.com', blank=False, null=False) # Set a default email

def str (self):

return self.name

class Course(models.Model):

name = models.CharField(max_length=100,unique=True)

students = models.ManyToManyField(Student, related_name='courses')

course_id = models.IntegerField(default=0,unique=True)

def str (self):

return self.name

6. Modify course_registration/forms.py to match the following code.

FULLSTACK DEVELOPMENT

P a g e 25 | 60

#forms.py

from .models import Student

from django import forms

from .models import Course

class CourseForm(forms.ModelForm):

class Meta:

model = Course

fields = ['name', 'course_id']

class StudentForm(forms.ModelForm):

class Meta:

model = Student

fields = ['name', 'date_of_birth', 'email']

7. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘course_registration’,

8. Create a templates folder, create inside templates folder, a subfolder named course_registration to

match the app name (this two-tiered folder structure is typical Django convention).

In the templates/course_registration folder, create files named add_student.html, add_course.html,

register_student.html, course_registration.html, and students_list.html with the contents below.

#templates/course_registration/add_student.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Add Student</title>

</head>

<body>

<h1>Add Student</h1>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Submit</button>

</form>

</body>

</html>

FULLSTACK DEVELOPMENT

P a g e 26 | 60

#templates/course_registration/add_course.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Add Course</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f7f7f7;

margin: 0;

padding: 20px;

}

h1 {

color: #333;

}

form {

background-color: #fff;

padding: 20px;

border-radius: 5px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}

label {

display: block;

margin-bottom: 10px;

font-weight: bold;

}

input[type="text"], input[type="number"] {

width: 100%;

padding: 10px;

margin-bottom: 20px;

border: 1px solid #ccc;

border-radius: 5px;

box-sizing: border-box;

font-size: 16px;

}

button[type="submit"] {

background-color: #007bff;

color: #fff;

padding: 10px 20px;

border: none;

FULLSTACK DEVELOPMENT

P a g e 27 | 60

border-radius: 5px;

cursor: pointer;

font-size: 16px;

}

button[type="submit"]:hover {

background-color: #0056b3;

}

</style>

</head>

<body>

<h1>Add Course</h1>

<form method="POST">

{% csrf_token %}

<label for="course_name">Course Name:</label>

<input type="text" id="course_name" name="name" required>

<label for="course_id">Course ID:</label>

<input type="number" id="course_id" name="course_id" required>

<button type="submit">Add Course</button>

</form>

</body>

</html>

#templates/course_registration/register_student.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Register Student</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f8f9fa;

margin: 0;

padding: 0;

}

.container {

max-width: 600px;

margin: 50px auto;

background-color: #fff;

padding: 20px;

FULLSTACK DEVELOPMENT

P a g e 28 | 60

border-radius: 5px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}

.form-group {

margin-bottom: 20px;

}

.form-control {

width: 100%;

padding: 10px;

border: 1px solid #ccc;

border-radius: 5px;

box-sizing: border-box;

}

.btn {

padding: 10px 20px;

background-color: #007bff;

color: #fff;

border: none;

border-radius: 5px;

cursor: pointer;

}

.btn-primary {

background-color: #007bff;

}

</style>

</head>

<body>

<div class="container">

<h1>Register Student to Course</h1>

<form method="POST" class="form">

{% csrf_token %}

<div class="form-group">

<label for="student_name">Student Name:</label>

<input type="text" id="student_name" name="student_name" class="form-control" required>

</div>

<div class="form-group">

<label for="course_id">Select Course:</label>

<select name="course_id" id="course_id" class="form-control">

{% for course in courses %}

<option value="{{ course.id }}">{{ course.name }}</option>

{% endfor %}

</select>

FULLSTACK DEVELOPMENT

P a g e 29 | 60

</div>

<button type="submit" class="btn btn-primary">Register</button>

</form>

</div>

</body>

</html>

#templates/course_registration/course_registration.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Course Registration</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f8f9fa;

margin: 0;

padding: 0;

}

.container {

max-width: 600px;

margin: 50px auto;

background-color: #fff;

padding: 20px;

border-radius: 5px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}

.list-group {

list-style-type: none;

padding: 0;

}

.list-group-item {

margin-bottom: 10px;

}

.list-group-item a {

text-decoration: none;

color: #333;

}

</style>

FULLSTACK DEVELOPMENT

P a g e 30 | 60

</head>

<body>

<div class="container">

<h1>Course Registration</h1>

<ul class="list-group">

{% for course in courses %}

<li class="list-group-item">

{{ course.name }} (ID: {{

course.course_id }})

{% endfor %}

</div>

</body>

</html>

#templates/course_registration/students_list.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Students List</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f8f9fa;

margin: 0;

padding: 0;

}

.container {

max-width: 600px;

margin: 50px auto;

background-color: #fff;

padding: 20px;

border-radius: 5px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}

.list-group {

list-style-type: none;

padding: 0;

FULLSTACK DEVELOPMENT

P a g e 31 | 60

}

.list-group-item {

margin-bottom: 10px;

}

</style>

</head>

<body>

<div class="container">

<h1>Students Registered for {{ course.name }}</h1>

<ul class="list-group">

{% for student in students %}

<li class="list-group-item">{{ student.name }}

{% empty %}

<li class="list-group-item">No students registered for this course.

{% endfor %}

</div>

</body>

</html>

9. Save all modified files.

10. In the VS Code Terminal, again with the virtual environment activated, run the below commands to

migrate changes.

python manage.py makemigrations

python manage.py migrate

11. In order to view the database and its tables, you can use SQLite DB Browser.

https://sqlitebrowser.org/dl/

12. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

13. In the url box of the browse, navigate to http://127.0.0.1:8000/registration/add_student to add the

students. Similarly, check out http://127.0.0.1:8000/registration/add_course to add courses,

http://127.0.0.1:8000/registration/register, http://127.0.0.1:8000/registration/courses, and

http://127.0.0.1:8000/registration/students_list/<course_id>

FULLSTACK DEVELOPMENT

P a g e 32 | 60

OUTPUT:

FULLSTACK DEVELOPMENT

P a g e 33 | 60

FULLSTACK DEVELOPMENT

P a g e 34 | 60

ManyToMany field application can be checked through the fact that multiple students can be enrolled to

multiple courses.

Try it out!!!!

Use the SQLite DB Browser to view, insert, update, and delete the records in the tables created in the db.sqlite3

database.

1. Open SQLite DB Browser.

2. Click on Open Database.

3. Select db.sqlite3 database.

FULLSTACK DEVELOPMENT

P a g e 35 | 60

4. Click on Browse Data.

5. Select the required table.

6. You can now access your tables.

FULLSTACK DEVELOPMENT

P a g e 36 | 60

Laboratory Component - 3:

1. For student and course models created in Lab experiment for Module2, register admin

interfaces, perform migrations and illustrate data entry through admin forms.

2. Develop a Model form for student that contains his topic chosen for project, languages used and

duration with a model called project.

3.1 Admin Interface.

1. Modify the course_registration/admin.py.

admin.py

from django.contrib import admin

from .models import Student, Course

class CourseAdmin(admin.ModelAdmin):

list_display = ['name', 'course_id']

admin.site.register(Student)

admin.site.register(Course, CourseAdmin)

2. Perform migrations using the commands.

python manage.py makemigrations

python manage.py migrate

3. Now to enter data through admin interfaces, we need to first create a super user to get access to the

admin dashboard. In the VS Code terminal run the below command,

python manage.py createsuperuser

4. Once the superuser is successfully created. Run the server in the VS Code terminal.

python manage.py runserver

5. In the url box of the browser, navigate to path http://127.0.0.1:8000/admin

6. Enter the username and password given.

FULLSTACK DEVELOPMENT

P a g e 37 | 60

FULLSTACK DEVELOPMENT

P a g e 38 | 60

FULLSTACK DEVELOPMENT

P a g e 39 | 60

3.2 Modify the previous app files.

1. Add the below code to course_registration/views.py existing code.

#views.py

from .models import Project

from .forms import ProjectForm

def project_list(request):

projects = Project.objects.all()

return render(request, 'course_registration/project_list.html', {'projects': projects})

def add_project(request):

if request.method == 'POST':

form = ProjectForm(request.POST)

if form.is_valid():

form.save()

return redirect('project_list')

else:

form = ProjectForm()

return render(request, 'course_registration/add_project.html', {'form': form})

2. In the course_registration/urls.py, include the new paths to existing urlpatterns list.

#urls.py (course_registration/urls.py)

… (to indicate rest of code)

path('project_list/', views.project_list, name='project_list'),

path('add_project/', views.add_project, name='add_project'),

…

3. Add below lines of code to existing course_registration/models.py

#models.py

…

class Project(models.Model):

topic = models.CharField(max_length=100)

languages_used = models.CharField(max_length=100)

duration = models.CharField(max_length=50)

def str (self):

return self.topic

…

FULLSTACK DEVELOPMENT

P a g e 40 | 60

4. Add below lines of code to existing course_registration/forms.py

#forms.py

from .models import Project

…

class ProjectForm(forms.ModelForm):

class Meta:

model = Project

fields = ['topic', 'languages_used', 'duration']

…

5. In the templates/course_registration folder, create files named add_project.html, and project_list.html

with the contents below.

#templates/course_registration/add_project.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Add Project</title>

<style>

body {

font-family: Arial, sans-serif;

margin: 0;

padding: 20px;

}

h1 {

color: #333;

}

form {

background-color: #f9f9f9;

padding: 20px;

border-radius: 5px;

}

label {

display: block;

margin-bottom: 5px;

}

input[type="text"] {

width: 100%;

padding: 8px;

margin-bottom: 10px;

FULLSTACK DEVELOPMENT

P a g e 41 | 60

border-radius: 5px;

border: 1px solid #ccc;

}

button {

background-color: #007bff;

color: #fff;

padding: 10px 20px;

border: none;

border-radius: 5px;

cursor: pointer;

}

</style>

</head>

<body>

<h1>Add Project</h1>

<form method="post">

{% csrf_token %}

<label for="id_topic">Topic:</label>

{{ form.topic }}

<label for="id_languages_used">Languages used:</label>

{{ form.languages_used }}

<label for="id_duration">Duration:</label>

{{ form.duration }}

<button type="submit">Submit</button>

</form>

</body>

</html>

#templates/course_registration/project_list.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Project List</title>

<style>

body {

font-family: Arial, sans-serif;

margin: 0;

padding: 20px;

}

h1 {

FULLSTACK DEVELOPMENT

P a g e 42 | 60

color: #333;

}

ul {

list-style-type: none;

padding: 0;

}

li {

margin-bottom: 10px;

background-color: #f9f9f9;

padding: 10px;

border-radius: 5px;

}

a {

text-decoration: none;

color: #007bff;

}

</style>

</head>

<body>

<h1>Project List</h1>

{% for project in projects %}

{{ project.topic }}

Languages used: {{ project.languages_used }}

Duration: {{ project.duration }}

{% empty %}

No projects available

{% endfor %}

Add Project

</body>

</html>

6. In the admin.py register the new Project model.

#admin.py

…

from .models import Student, Course, Project

…

admin.site.register(Project)

…

FULLSTACK DEVELOPMENT

P a g e 43 | 60

7. Save all modified files.

8. In the VS Code Terminal, again with the virtual environment activated, run the below commands to

migrate changes.

python manage.py makemigrations

python manage.py migrate

9. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

10. In the url box of the browse, navigate to http://127.0.0.1:8000/registration/add_project to add the

projects into database. Similarly, check out http://127.0.0.1:8000/registration/project_list to view

projects.

OUTPUT:

FULLSTACK DEVELOPMENT

P a g e 44 | 60

FULLSTACK DEVELOPMENT

P a g e 45 | 60

Laboratory Component - 4:

1. For students’ enrolment developed in Module 2, create a generic class view which displays list

of students and detailview that displays student details for any selected student in the list.

2. Develop example Django app that performs CSV and PDF generation for any models created in

previous laboratory component.

4. 1. Modify the previous app files.

1. Add the below code to course_registration/views.py existing code.

#views.py

from .models import Student

from django.views.generic import ListView, DetailView

class StudentListView(ListView):

model = Student

template_name = 'course_registration/student_list.html'

context_object_name = 'students'

class StudentDetailView(DetailView):

model = Student

template_name = 'course_registration/student_detail.html'

context_object_name = 'student'

def get_context_data(self, **kwargs):

context = super().get_context_data(**kwargs)

student = self.object # Get the student object

context['date_of_birth'] = student.date_of_birth

context['email'] = student.email

Add more fields as needed

return context

2. In the course_registration/urls.py, include the new paths to existing urlpatterns list.

#urls.py (course_registration/urls.py)

… (to indicate rest of code)

path('students/', views.StudentListView.as_view(), name='student_list'),

path('student/<int:pk>/', views.StudentDetailView.as_view(),

name='student_detail'),

…

FULLSTACK DEVELOPMENT

P a g e 46 | 60

3. In the templates/course_registration folder, create files named student_list.html, and student_detail.html

with the contents below.

#templates/course_registration/student_list.html (The CSS is optional)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Student List</title>

<style>

body {

font-family: Arial, sans-serif;

margin: 0;

padding: 20px;

}

h1 {

color: #333;

}

ul {

list-style-type: none;

padding: 0;

}

li {

margin-bottom: 10px;

}

a {

text-decoration: none;

color: #007bff;

font-weight: bold;

}

a:hover {

color: #0056b3;

}

</style>

</head>

<body>

<h1>Student List</h1>

{% for student in object_list %}

{{ student.name }}

{% empty %}

FULLSTACK DEVELOPMENT

P a g e 47 | 60

No students available

{% endfor %}

</body>

</html>

#templates/course_registration/student_list.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Student Detail</title>

</head>

<body>

<h1>Student Detail</h1>

<p>Name: {{ student.name }}</p>

<p>ID: {{ student.id }}</p>

<p>Date of Birth: {{ date_of_birth }}</p>

<p>Email: {{ email }}</p>

<!-- Add more details as needed -->

</body>

</html>

4. Save all modified files.

5. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

6. In the url box of the browse, navigate to http://127.0.0.1:8000/registration/students. Similarly, check

out http://127.0.0.1:8000/registration/student/<id or pk>.

FULLSTACK DEVELOPMENT

P a g e 48 | 60

OUTPUT:

FULLSTACK DEVELOPMENT

P a g e 49 | 60

FULLSTACK DEVELOPMENT

P a g e 50 | 60

4.2. Create new app for generating pdf and csv.

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

1. Add the below code to generate/views.py .

#views.py

from course_registration.models import Student

from django.http import HttpResponse

import csv

from io import BytesIO

from reportlab.lib.pagesizes import letter

from reportlab.pdfgen import canvas

def generate_csv(request):

Retrieve all student objects from the database

students = Student.objects.all()

Create an HTTP response with content type 'text/csv'

response = HttpResponse(content_type='text/csv')

Set the content disposition header to specify the filename for download

response['Content-Disposition'] = 'attachment; filename="students.csv"'

Create a CSV writer object

writer = csv.writer(response)

Write the header row

writer.writerow(['ID', 'Name', 'Date of Birth', 'Email'])

Write each student's information to a row in the CSV file

for student in students:

writer.writerow([student.id, student.name,

student.date_of_birth, student.email])

Return the HTTP response containing the CSV file

return response

def generate_pdf(request):

Retrieve all student objects from the database

students = Student.objects.all()

Create a BytesIO buffer to store the PDF content

buffer = BytesIO()

Create a canvas object with letter size (8.5x11 inches)

python manage.py startapp generate

FULLSTACK DEVELOPMENT

P a g e 51 | 60

p = canvas.Canvas(buffer, pagesize=letter)

Set the title for the PDF document

p.setFont("Helvetica-Bold", 16)

p.drawString(100, 750, "Student List")

Set the starting y-coordinate for student information

y = 700

Iterate over each student and add their information to the PDF

for student in students:

Set font size and add student information to the PDF

p.setFont("Helvetica", 12)

p.drawString(

100, y, f"ID: {student.id}, Name: {student.name}, DoB: {student.date_of_birth}, Email:

{student.email}")

Move to the next line

y -= 20

Save the PDF document

p.showPage()

p.save()

Move the buffer's cursor to the beginning

buffer.seek(0)

Create an HTTP response with content type 'application/pdf'

response = HttpResponse(buffer.getvalue(), content_type='application/pdf')

Set the content disposition header to specify the filename for download

response['Content-Disposition'] = 'attachment; filename="students.pdf"'

Return the HTTP response containing the PDF file

return response

2. In the generate/urls.py, include the new paths.

#urls.py (generate/urls.py)

from django.urls import path

from . import views

urlpatterns = [

path('generate_csv/', views.generate_csv, name='generate_csv'),

path('generate_pdf/', views.generate_pdf, name='generate_pdf'),

]

3. The myproject folder also contains a urls.py file, which is where URL routing is actually handled.

FULLSTACK DEVELOPMENT

P a g e 52 | 60

#urls.py (myproject/urls.py)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path("", include("myapp.urls")),

path("admin/", admin.site.urls),

path('', include('website_pages.urls')),

path('fruits_and_students/', include('fruits_and_students.urls')),

path('registration/', include('course_registration.urls')),

path('', include('generate.urls')),

]

4. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘generate’,

5. Save all modified files.

6. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

7. In the url box of the browse, navigate to http://127.0.0.1:8000/generate_pdf. Similarly, check out

http://127.0.0.1:8000/generate_csv.

OUTPUT:

FULLSTACK DEVELOPMENT

P a g e 53 | 60

Laboratory Component - 5:

1. Develop a registration page for student enrolment as done in Module 2 but without page refresh

using AJAX.

2. Develop a search application in Django using AJAX that displays courses enrolled by a student

being searched.

5.1 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

2. Modify enrollment/views.py to match the following code.

#views.py

from django.shortcuts import render

from django.http import JsonResponse

from .forms import StudentRegistrationForm

def register_student(request):

if request.method == 'POST':

form = StudentRegistrationForm(request.POST)

if form.is_valid():

Here you would typically save the data to a database or perform other actions

return JsonResponse({"success": True, "message": "Student registered successfully!"})

else:

return JsonResponse({"success": False, "errors": form.errors})

else:

form = StudentRegistrationForm()

return render(request, 'enrollment/register.html', {'form': form})

3. Create a file, enrollment/urls.py, with the contents below. The urls.py file is where you specify patterns

to route different URLs to their appropriate views.

#urls.py (enrollment/urls.py)

from django.urls import path

from .views import register_student

urlpatterns = [

path('register/', register_student, name='register_student'),

]

python manage.py startapp enrollment

FULLSTACK DEVELOPMENT

P a g e 54 | 60

4. The myproject folder also contains a urls.py file, which is where URL routing is actually handled.

#urls.py (myproject/urls.py)

…

path('', include('enrollment.urls')),

…

5. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘enrollment’,

6. Create forms.py and add the following code.

#forms.py

from django import forms

class StudentRegistrationForm(forms.Form):

name = forms.CharField(label='Full Name', max_length=100)

email = forms.EmailField(label='Email')

course = forms.CharField(label='Course', max_length=100)

3 Inside the enrollment folder, create a folder named templates, and then another subfolder named enrollment

to match the app name (this two-tiered folder structure is typical Django convention).

In the templates/enrollment folder, create a file named register.html with the contents below.

#register.html (enrollment/templates/enrollment/register.html)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Student Registration</title>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

</head>

<body>

<form id="registrationForm">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Register</button>

</form>

FULLSTACK DEVELOPMENT

P a g e 55 | 60

<div id="message"></div>

<script>

function getCookie(name) {

let cookieValue = null;

if (document.cookie && document.cookie !== '') {

const cookies = document.cookie.split(';');

for (let i = 0; i < cookies.length; i++) {

const cookie = jQuery.trim(cookies[i]);

if (cookie.substring(0, name.length + 1) === (name + '=')) {

cookieValue = decodeURIComponent(cookie.substring(name.length + 1));

break;

}

}

}

return cookieValue;

}

$(document).ready(function () {

$('#registrationForm').submit(function (e) {

e.preventDefault();

$.ajax({

type: 'POST',

url: '{% url "register_student" %}',

data: $(this).serialize(),

success: function (response) {

if (response.success) {

$('#message').html('<p style="color: green;">' + response.message + '</p>');

$('#registrationForm').trigger('reset'); // Reset form if needed

} else {

$('#message').html('<p style="color: red;">' + JSON.stringify(response.errors) +

'</p>');

}

}

});

});

});

</script>

</body>

</html>

7. Save all the modified files.

FULLSTACK DEVELOPMENT

P a g e 56 | 60

8. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

9. In the url box of the browse, navigate to http://127.0.0.1:8000/register. Uses AJAX to submit data

without refreshing the page. Just click on the Register button once details are entered.

OUTPUT:

FULLSTACK DEVELOPMENT

P a g e 57 | 60

5.2 Create a Django app

1. In the VS Code Terminal with your virtual environment activated, run the administrative

utility's startapp command in your myproject folder (where manage.py resides):

2. Modify course_search/views.py to match the following code.

#views.py

from django.http import JsonResponse

from course_registration.models import Student, Course

from django.shortcuts import render

def search_courses(request):

if request.headers.get('x-requested-with') == 'XMLHttpRequest':

query = request.GET.get('query', None)

if query:

Perform the search based on the query parameter

courses = Course.objects.filter(students name icontains=query)

Create a list of course names

course_names = [{'name': course.name,

'course_id': course.course_id} for course in courses]

Return the list of course names as JSON response

return JsonResponse({'courses': course_names})

else:

return JsonResponse({'error': 'No query parameter provided'})

else:

Optionally, handle non-AJAX requests here

return render(request, 'course_search/search.html')

3. Create a file, course_search/urls.py, with the contents below. The urls.py file is where you specify

patterns to route different URLs to their appropriate views.

#urls.py (course_search/urls.py)

from django.urls import path

from .views import search_courses

urlpatterns = [

path('search/', search_courses, name='search_courses'),

]

python manage.py startapp course_search

FULLSTACK DEVELOPMENT

P a g e 58 | 60

4. The myproject folder also contains a urls.py file, which is where URL routing is actually handled.

#urls.py (myproject/urls.py)

…

path(‘’, include(‘course_search.urls’)),

…

5. In the myproject/settings.py file, locate the INSTALLED_APPS list and add the following entry, which

makes sure the project knows about the app so it can handle templating:

‘course_search’,

6. Inside the course_search folder, create a folder named templates, and then another subfolder named

course_search to match the app name (this two-tiered folder structure is typical Django convention).

In the templates/course_search folder, create a file named search.html with the contents below.

#search.html (course_search/templates/course_search/search.html)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Search Courses</title>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

<script>

$(document).ready(function() {

$('#search-form').submit(function(event) {

event.preventDefault();

var formData = $(this).serialize();

$.ajax({

url: '/search/',

type: 'get',

data: formData,

dataType: 'json',

success: function(response) {

if (response.courses) {

var coursesHtml = '';

response.courses.forEach(function(course) {

coursesHtml += '' + course.name + ' (' + course.course_id + ')';

});

FULLSTACK DEVELOPMENT

P a g e 59 | 60

$('#courses-list').html(coursesHtml);

} else {

$('#courses-list').html('No courses found');

}

},

error: function(xhr, status, error) {

console.error('Error:', error);

}

});

});

});

</script>

</head>

<body>

<h1>Search Courses by Student</h1>

<form id="search-form" method="get">

<input type="text" name="query" placeholder="Enter student name">

<button type="submit">Search</button>

</form>

<ul id="courses-list">

</body>

</html>

7. Save all the modified files.

8. In the VS Code Terminal, again with the virtual environment activated, run the development server with

python manage.py runserver and open a browser to http://127.0.0.1:8000/

9. In the url box of the browse, navigate to http://127.0.0.1:8000/search. Uses AJAX to retrieve data

without refreshing the page. Just click on the Search button once details are entered.

OUTPUT:

	Laboratory Component - 1:
	1.1 Installation
	b) Visual Studio Code:
	1.2 Virtual Environment and Project Setup:
	python -m pip install --upgrade pip
	python -m pip install django
	#views.py
	#urls.py (myproject/urls.py)
	#current_datetime.html (myapp/templates/myapp/current_datetime.html)
	#date_time_offset.html (myapp/templates/myapp/ date_time_offset.html)

	Laboratory Component - 2:
	#views.py
	#urls.py (fruits_and_students/urls.py)
	#urls.py (myproject/urls.py)
	#fruits_and_students.html (fruits_and_students/templates/fruits_and_students/ fruits_and_students.html)
	OUTPUT:
	#views.py (1)
	#urls.py (website_pages /urls.py)
	#urls.py (myproject/urls.py) (1)
	#templates/layout.html (The CSS is optional)
	#home.html (website_pages/templates/website_pages/home.html)
	#about_us.html (website_pages/templates/website_pages/about_us.html)
	#contact_us.html (website_pages/templates/website_pages/contact_us.html)
	OUTPUT: (1)
	#views.py (2)
	#urls.py (course_registration/urls.py)
	#urls.py (myproject/urls.py) (2)
	#models.py
	#forms.py
	#templates/course_registration/add_student.html (The CSS is optional)
	#templates/course_registration/add_course.html (The CSS is optional)
	#templates/course_registration/register_student.html (The CSS is optional)
	#templates/course_registration/course_registration.html (The CSS is optional)
	#templates/course_registration/students_list.html (The CSS is optional)
	python manage.py makemigrations python manage.py migrate
	https://sqlitebrowser.org/dl/
	OUTPUT: (2)
	multiple courses. Try it out!!!!

	Laboratory Component - 3:
	# admin.py
	python manage.py makemigrations python manage.py migrate
	python manage.py createsuperuser
	python manage.py runserver
	#views.py
	#urls.py (course_registration/urls.py)
	…
	#models.py
	… (1)
	#forms.py
	… (2)
	#templates/course_registration/add_project.html (The CSS is optional)
	#templates/course_registration/project_list.html (The CSS is optional)
	#admin.py
	python manage.py makemigrations python manage.py migrate (1)

	Laboratory Component - 4:
	#views.py
	#urls.py (course_registration/urls.py)
	…
	#templates/course_registration/student_list.html (The CSS is optional)
	#templates/course_registration/student_list.html
	OUTPUT:
	#views.py (1)
	#urls.py (myproject/urls.py)

	Laboratory Component - 5:
	#views.py
	#urls.py (enrollment/urls.py)
	#urls.py (myproject/urls.py)
	#forms.py
	#register.html (enrollment/templates/enrollment/register.html)
	OUTPUT:
	#views.py (1)
	#urls.py (course_search/urls.py)
	#urls.py (myproject/urls.py) (1)
	#search.html (course_search/templates/course_search/search.html)
	OUTPUT: (1)

